a) Tìm tất cả các cặp số (a;b) thỏa mãn |a+2|+|a+3|+|a+4|=2-b^2

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

a,f(1/2)=5-2*(1/2)=5-1=4

   f(3)=5-2x3=5-6=-1

b,Với y=5 thì 5-2x=5

                    2x=5-5

                    2x=0

                    x=0:2=0

                   Vậy x=0

 Với y=-1 thì 5-2x=-1

                   2x=5-(-1)

                   2x=5+1

                   2x=6

                   x=6:2=3 

              Vậy x=3

a: (x-2)(x+3)>0

TH1: \(\begin{cases}x-2>0\\ x+3>0\end{cases}\Rightarrow\begin{cases}x>2\\ x>-3\end{cases}\Rightarrow x>2\)

TH2: \(\begin{cases}x-2<0\\ x+3<0\end{cases}\Rightarrow\begin{cases}x<2\\ x<-3\end{cases}\)

=>x<-3

b: (2x-1)(-x+1)>0

=>(2x-1)(x-1)<0

TH1: \(\begin{cases}2x-1>0\\ x-1<0\end{cases}\Longrightarrow\begin{cases}x>\frac12\\ x<1\end{cases}\)

=>\(\frac12

TH2: \(\begin{cases}2x-1<0\\ x-1>0\end{cases}\Rightarrow\begin{cases}x<\frac12\\ x>1\end{cases}\)

=>x∈∅

c: (x+1)(3x-6)<0

=>3(x+1)(x-2)<0

=>(x+1)(x-2)<0

TH1: \(\begin{cases}x+1>0\\ x-2<0\end{cases}\Rightarrow\begin{cases}x>-1\\ x<2\end{cases}\Rightarrow-1

TH2: \(\begin{cases}x+1<0\\ x-2>0\end{cases}\Rightarrow\begin{cases}x<-1\\ x>2\end{cases}\)

=>x∈∅

MT
22 tháng 8
L Nguyễn Lê Phước Thịnh dùng chat


16 tháng 12 2017

a) Thay f(1/2) vào hàm số ta có :

y=f(1/2)=5-2.(1/2)=4

Thay f(3) vào hàm số ta có :

y=f(3)=5-2.3=-1

b) y=5-2x <=> 5-2x=5

2x=5-5

2x=0

=> x=0

<=> 5-2x=-1

2x=5-(-1)

2x=6

=> x=3

25 tháng 12 2018

a, f (1/2) = 5 - 2.1/2 = 4

    f (3) = 5 - 2.3 = -1

b, y = 5 <=> 5 - 2x = 5

             <=>  x  = 0

    y = -1 <=> 5 - 2x = -1

               <=> x = 3

_Hok tốt_

  ( sai thì thôi nha )

a) ko có a, b thỏa mãn

b) Giá trị lớn nhất của A = \(\frac{7}{6}\)

c) 16

d)  x = \(\frac{14}{3}\)

e) x=-1

g) n= 7

h) 

j) x=1

k) n=11

 

22 tháng 9 2015

1. \(\frac{x}{y}=\frac{7}{17}\)

3. Có 6 cặp

4. 0 có cặp nào hết

Câu 2 mình không biết nha. Thông cảm

1)

Xét \(\left|x\right|>3\)\(\Rightarrow\)\(C>0\)

Xét \(0\le\left|x\right|< 3\)\(\Rightarrow\)\(C< 0\)

+ Với \(\left|x\right|=0\)\(\Leftrightarrow\)\(x=0\) thì \(C=-2\)

+ Với \(\left|x\right|=1\)\(\Leftrightarrow\)\(x=\pm1\) thì \(C=-3\)

+ Với \(\left|x\right|=2\)\(\Leftrightarrow\)\(x=\pm2\) thì \(C=-6\)

Vậy GTNN của \(C=-6\) khi \(x=\pm2\)

2) 

Xét \(x\ge0\)\(\Rightarrow\)\(x-\left|x\right|=0\)

Xét \(x< 0\)\(\Rightarrow\)\(x-\left|x\right|=2x< 0\)

Vậy GTLN của \(x-\left|x\right|=0\) khi \(x>0\)

5 tháng 1 2020

Ví dụ một bài toán : 

Tìm GTLN của B = 10-4 | x-2| 

Vì |x-2| \(\ge0\forall x\)

\(\Rightarrow-4.\left|x-2\right|\le0\forall x\). Tại sao mà tìm GTLN mà lại nhỏ hơn hoặc bằng 0 ạ