Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bước 1: Áp dụng quy tắc lũy thừa
Ta biết rằng:
\(a^{m} \cdot a^{n} = a^{m + n}\)
Nên:
\(\left(\left(\right. \frac{1}{4} \left.\right)\right)^{3} \cdot \left(\left(\right. \frac{1}{4} \left.\right)\right)^{5} \cdot \ldots \cdot \left(\left(\right. \frac{1}{4} \left.\right)\right)^{97} = \left(\left(\right. \frac{1}{4} \left.\right)\right)^{T}\)
Trong đó \(T\) là tổng các số mũ:
\(T = 3 + 5 + 7 + \ldots + 97\)
Bước 2: Tính tổng \(T\)
Dãy số \(3 + 5 + 7 + \ldots + 97\) là một cấp số cộng:
- Số hạng đầu: \(a = 3\)
- Số hạng cuối: \(l = 97\)
- Công sai: \(d = 2\)
Tính số lượng số hạng:
\(n = \frac{l - a}{d} + 1 = \frac{97 - 3}{2} + 1 = 47 + 1 = 48\)
Tính tổng:
\(T = \frac{n}{2} \left(\right. a + l \left.\right) = \frac{48}{2} \left(\right. 3 + 97 \left.\right) = 24 \cdot 100 = 2400\)
Kết quả cuối cùng:
\(\left(\left(\right. \frac{1}{4} \left.\right)\right)^{2400} = 4^{- 2400}\)
Đáp án: \(\boxed{4^{- 2400}}\)

(x+1)+(x+2)+(x+3)=4x
x+1+x+2+x+3=4x
(x+x+x)+(1+2+3)=4x
x*3+6=4x
6=1*x(bớt cả hai vế đi 3*x)
x=6/1(Tìm thừa số)
x=6

a, 2 -|3/2x -1/4| =|-1,25 |
=>2 -|3/2x-1/4 | = 1,25
=> |3/2x -1/4| = 2-1,25
=> 3/2x -1/4 = 0,75 hoac 3/2x -1/4 = -0,75
=> 3/2 x = 3/4 -1/4 hoac 3/2 x = -3/4 -1/4
=> 3/2 x = 1/2 hoac 3/2 x = -1
=> x = 1/2 :3/2 hoac x = -1 : 3/2
=> x = 1/3 hoac x = -2/3
vay
cảm ơn nhé nhưng mk bt làm òi
mk chỉ đăng câu hỏi cho vv thui

a, 1,5 +|2x - 2/3| = 3/2
|2x - 2/3| = 3/2 - 1,5
|2x - 2/3| = 0
<=> 2x - 2/3 = 0
<=> 2x = 0 + 2/3
<=> 2x = 2/3
<=> x = 2/3 : 2
<=> x = 1/3
Vậy x = 1/3
b, 3/4 - |1/4 - x| = 5/8
|1/4 - x| = 3/4 - 5/8
|1/4 - x| = 1/8
<=> 1/4 - x = 1/8
1/4 - x = /1/8
<=> x = 1/4 - 1/8
x = 1/4 - ( -1/8)
<=> x = 1/8
x = 3/8
Vậy x thuộc { 1/8 ; 3/8 }

a) Vì \(\hept{\begin{cases}\left|5-4x\right|\ge0\\\left|7y-3\right|\ge0\end{cases}}\)nên dấu "=" xảy ra <=> x = 5/4 ; y = 3/7
b) Vì \(\hept{\begin{cases}\left|x-3y-1\right|\ge0\\\left|y-4\right|\ge0\end{cases}}\)nên dấu "=" xảy ra <=> x = 13 ; y = 4
a)do |5-4x|+|7y-3|=0,mà|5-4x| và|7y-3| đều lớn hơn hoặc = 0
suy ra 5-4x=7y-3=0 thì biểu thức mới thỏa mãn
(do mọi số trong dấu GTTĐ đều lớn hơn hoặc bằng 0)
tự giải nốt nhé

Bậc của đa thức A ( x ) : 5
Bậc của đa thức B ( x ) : 5
Hệ số cao nhất của đa thức A ( x ) : 1
Hệ số cao nhất của đa thức B ( x ) : - 1
Hệ số tự do của đa thức A ( x ) : - 7
Hệ số tự do của đa thức B ( x ) : - 1

\(a,\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x+\frac{5}{2}-\frac{7}{2}x=-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x=-\frac{13}{4}\)
\(\Leftrightarrow x=-\frac{13}{4}:(-3)=-\frac{13}{4}:\frac{-3}{1}=-\frac{13}{4}\cdot\frac{-1}{3}=\frac{13}{12}\)
\(b,\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x=-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x=\frac{1}{15}\)
\(\Leftrightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{6}{15}=\frac{2}{5}\)
\(c,\frac{1}{3}x+\frac{2}{5}(x+1)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)
\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\)
\(\Leftrightarrow x=-\frac{6}{11}\)
d,e,f Tương tự