Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bước 1: Áp dụng quy tắc lũy thừa
Ta biết rằng:
\(a^{m} \cdot a^{n} = a^{m + n}\)
Nên:
\(\left(\left(\right. \frac{1}{4} \left.\right)\right)^{3} \cdot \left(\left(\right. \frac{1}{4} \left.\right)\right)^{5} \cdot \ldots \cdot \left(\left(\right. \frac{1}{4} \left.\right)\right)^{97} = \left(\left(\right. \frac{1}{4} \left.\right)\right)^{T}\)
Trong đó \(T\) là tổng các số mũ:
\(T = 3 + 5 + 7 + \ldots + 97\)
Bước 2: Tính tổng \(T\)
Dãy số \(3 + 5 + 7 + \ldots + 97\) là một cấp số cộng:
- Số hạng đầu: \(a = 3\)
- Số hạng cuối: \(l = 97\)
- Công sai: \(d = 2\)
Tính số lượng số hạng:
\(n = \frac{l - a}{d} + 1 = \frac{97 - 3}{2} + 1 = 47 + 1 = 48\)
Tính tổng:
\(T = \frac{n}{2} \left(\right. a + l \left.\right) = \frac{48}{2} \left(\right. 3 + 97 \left.\right) = 24 \cdot 100 = 2400\)
Kết quả cuối cùng:
\(\left(\left(\right. \frac{1}{4} \left.\right)\right)^{2400} = 4^{- 2400}\)
Đáp án: \(\boxed{4^{- 2400}}\)

(x+1)+(x+2)+(x+3)=4x
x+1+x+2+x+3=4x
(x+x+x)+(1+2+3)=4x
x*3+6=4x
6=1*x(bớt cả hai vế đi 3*x)
x=6/1(Tìm thừa số)
x=6

a, 1,5 +|2x - 2/3| = 3/2
|2x - 2/3| = 3/2 - 1,5
|2x - 2/3| = 0
<=> 2x - 2/3 = 0
<=> 2x = 0 + 2/3
<=> 2x = 2/3
<=> x = 2/3 : 2
<=> x = 1/3
Vậy x = 1/3
b, 3/4 - |1/4 - x| = 5/8
|1/4 - x| = 3/4 - 5/8
|1/4 - x| = 1/8
<=> 1/4 - x = 1/8
1/4 - x = /1/8
<=> x = 1/4 - 1/8
x = 1/4 - ( -1/8)
<=> x = 1/8
x = 3/8
Vậy x thuộc { 1/8 ; 3/8 }

\(\frac{3}{13}.\frac{5}{9}+\frac{1}{6}:\frac{13}{3}+1\)
\(=\frac{3}{13}.\frac{5}{9}+\frac{1}{6}.\frac{3}{13}+1\)
\(=\frac{3}{13}.\left(\frac{5}{9}+\frac{1}{6}\right)+1\)
\(=\frac{3}{13}.\left(\frac{30+9}{54}\right)+1\)
\(=\frac{3}{13}.\frac{39}{54}+1\)
\(=\frac{1}{6}+1\)
\(=\frac{7}{6}\)
\(\frac{5}{6}-\frac{7}{9}.\frac{2}{13}-\frac{7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\left(\frac{2}{13}-\frac{11}{13}\right)+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\frac{-9}{13}-\frac{2}{9}\)
\(=\frac{5}{6}-\frac{-7}{13}-\frac{2}{9}\)
\(\frac{5}{6}-\frac{7}{9}.\frac{2}{13}-\frac{7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\left(\frac{2}{13}-\frac{11}{13}\right)+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\frac{-9}{13}-\frac{2}{9}\)
\(=\frac{5}{6}-\frac{-7}{13}-\frac{2}{9}\)
\(=\frac{5}{6}+\frac{7}{13}-\frac{2}{9}\)
\(=\frac{195+126-52}{234}\)
\(=\frac{269}{234}\)
\(\frac{3}{13}.\frac{5}{9}+\frac{1}{6}:\frac{13}{3}+1\)
\(=\frac{3}{13}.\frac{5}{9}+\frac{1}{6}.\frac{3}{13}+1\)
\(=\frac{3}{13}.\left(\frac{5}{9}+\frac{1}{6}\right)+1\)
\(=\frac{3}{13}.\left(\frac{30+9}{54}\right)+1\)
\(=\frac{3}{13}.\frac{39}{54}+1\)
\(=\frac{1}{6}+1=\frac{1}{6}+\frac{6}{6}\)
\(=\frac{7}{6}\)
\(\frac{-7}{9}.\frac{2}{13}-\frac{7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{-7}{9}.\frac{2}{13}+\frac{-7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{-7}{9}.\left(\frac{2}{13}+\frac{11}{13}\right)+\frac{-2}{9}\)
\(=\frac{-7}{9}.1+\frac{-2}{9}\)
\(=\frac{-7}{9}+\frac{-2}{9}\)
\(=\frac{-9}{9}=-1\)
\(\frac{2}{13}.\frac{2}{7}.5\)
\(=\frac{2.2.5}{13.7}\)
\(=\frac{20}{91}\)
\(\frac{1}{5}.\frac{11}{12}.\frac{21}{6}\)
\(=\frac{11.21}{5.12.6}\)
\(=\frac{231}{360}=\frac{77}{120}\)

Mình bày cách làm nhé ! Ở 3 câu,mỗi số hạng ở vế trái là trị tuyệt đối nên ko âm
=> Vế trái ko âm và bằng 0 (theo đề) chỉ khi mỗi số hạng bằng 0.Từ đó tìm được x,y

/5x-4/=/x+2/
\(\orbr{\begin{cases}5x-4=x+2\\5x-4=-x+2\end{cases}}suyra\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
vậy x=3/2 hoặc x=1/2

Ta có \(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{10}{-2}=-5\)
\(\Rightarrow x=3.\left(-5\right)=-15;y=\left(-5\right).5=-25\)
Vậy x = -15 ; y = -25
a) Vì \(\hept{\begin{cases}\left|5-4x\right|\ge0\\\left|7y-3\right|\ge0\end{cases}}\)nên dấu "=" xảy ra <=> x = 5/4 ; y = 3/7
b) Vì \(\hept{\begin{cases}\left|x-3y-1\right|\ge0\\\left|y-4\right|\ge0\end{cases}}\)nên dấu "=" xảy ra <=> x = 13 ; y = 4
a)do |5-4x|+|7y-3|=0,mà|5-4x| và|7y-3| đều lớn hơn hoặc = 0
suy ra 5-4x=7y-3=0 thì biểu thức mới thỏa mãn
(do mọi số trong dấu GTTĐ đều lớn hơn hoặc bằng 0)
tự giải nốt nhé