K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

Ta có : A =  2011 +  2011+ 2011+ .... + 20112011

=> A = 2011(1+2011+ 2011+ .... + 20112010)

=> A lẻ 

=> A không chia hết cho 2012

16 tháng 11 2014

2013+2012^2(1+2012)+.......................+2011^6(1+2012) TA THẤY MOI SO DAU CO THUA SO 2012 +1 =2013 VAY NÓ CHIA HET CHO 13

16 tháng 11 2014

1+2011=2012

VẦY TA CÓ 2011+1 + 2011^2+2011^2 X2011  +.......................2011^6 +2011^6 X 2011 SUUY RA 2012+2011^2(1+2011)+..........................+2016^6(1+2011)=(2011+1) X ( 2011^2+...............+2016^6) =2012(2011^2+...............+2016^6) TA THẤY 2012 CHIA HẾT CHO 2012 VẬY TỔNG NÀY CHIA HẾT CHO 2012

2 tháng 4 2016

a=20112012 -20112011=20112011(2011-1)=20112011.2010

b=20112013-20112012=20112012(2011-1)=20112012.2010

vì 20112011<20112012=>a<b

8 tháng 4 2017

\(10A=10^{2012}+10^{2013}+10^{2014}+...+10^{2019}+160\)

\(9A=10A-A=10^{2019}-10^{2011}+160-16\)

\(9A=10^{2011}\left(10^8-1\right)+9\cdot16\)

\(9A=10^{2011}.99999999+9.16\)

\(9A=10^{2011}.11111111.9+9.16\)

\(A=10^{2011}.11111111+16\)
__________________________________________

\(A⋮48\Rightarrow A⋮16;A⋮3\) (1)

\(10:3\) dư 1

\(10^2:3\) dư 1

...

\(\Rightarrow10^{2011}:3\) dư 1

\(11111111=11100000+11100+11\)

\(11100000⋮3;11100⋮3;11:3\) dư 2

\(\Rightarrow11111111:3\) dư 2

\(16:3\) dư 1

\(\Rightarrow A:3\)\(1.2+1=3\)

\(\Rightarrow A⋮3\) (2)
__________________________________________

\(10^{2011}=2^{2011}.5^{2011}=2^4.2^{2007}.5^{2011}⋮2^4=16\)

\(10^{2011}⋮16\) \(\Rightarrow10^{2011}.11111111⋮16\)

\(16⋮16\)

\(\Rightarrow A⋮16\) (3)

_________________________________________

Từ (1), (2) và (3) suy ra: \(A⋮48\) (đpcm)

A = 2011^2012 - 2011^ 2011 = 2011^2011 . ( 2011 - 1 ) = 2011^2011 . 2010

B = 2011^2013 - 2011^2012 = 2011^2012 . ( 2011 - 1 ) = 2011^2012 . 2010

Vì 2011^2011 < 2012^2011

=> A < B