
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Olm chào em, dưới đây là chú giải cho câu hỏi của em
Nếu p = 3k + 2 ta có:
2p\(^2\) + 1
= 2(3k + 2)\(^2\) + 1
= 2.(9k\(^2\) + 12k + 4) + 1
= 18k\(^2\) + 24k + 8 + 1
= 18k\(^2\) + 24k + (8 + 1)
= 18k\(^2\) + 24k + 9
= 3.(6k\(^2\) + 8k + 3) ⋮ 3

5x : 52 = 625
5x : 52 = 54
5x = 54. 52
5x = 56
\(\Rightarrow\)x = 6
Vậy x =6
5x : 52 = 625
5x-2=625
x-2=4
x=6
~~~~~~~~~~~~~Ai đi ngang qua nhớ để lại ti ck thanks~~~~~~~~~~~

â) Ta có : \(2n-1⋮n+1\Leftrightarrow2n+2-2-1⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)-2-1⋮n+1\)\(\Leftrightarrow2\left(n+1\right)-3⋮n+1\)
\(\Leftrightarrow2n-1⋮n+1\)khi \(3⋮n+1\Rightarrow n+1\in\)Ước của \(3\) \
\(\Leftrightarrow n+1\in\left(1;-1;3;-3\right)\)
\(\Leftrightarrow n\in\left(0;-2;2;-4\right)\)
Vậy \(n\in\left(-4;-2;0;2\right)\)
b) Ta có :\(9n+5⋮3n-2\Rightarrow3\left(3n-2\right)+6+5⋮3n-2\)
\(\Rightarrow3\left(3n-2\right)+11⋮3n-2\)
\(\Rightarrow9n+5⋮3n-2\)Khi \(11⋮3n-2\)
\(\Rightarrow3n-2\in U\left(11\right)\)
\(\Rightarrow3n-2\in\left(-11;-1;1;11\right)\)
\(\Rightarrow n\in\left(-3;1;\right)\)
Phần c) bạn tự làm nhé!

Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121

Giải;
A = (22 + 24) + (26 + 28) + … (219 + 220)
A = 20 + 24 (22 + 24) + … 216 (22 + 24)
A = 20 + 24 (20) + … 216 (20)
A = 20(1 + 24 + … 216)
A = 5.4.(1 + 24 + … 216)
Vậy A chia hết cho 5 và 4.
5< hoặc =5x< hoặc =625
vì 625=54
suy ra 5x=51,52,53,54
vay x={1,2,3,4}
Vì \(625=5^4;5=5^1\) nên x thỏa mãn vs các giá trị từ 1 -> 4