
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}\)
\(=xyz.\left [ \frac{1}{yz(1+x^2)}+\frac{2}{xz(1+y^2)}+\frac{3}{xy(1+z^2)} \right ]\)
\(=xyz.\left [ \frac{1}{yz+x(x+y+z)}+\frac{2}{xz+y(x+y+z)}+\frac{3}{xy+z(x+y+z)} \right ]\)
\(=xyz.\left [ \frac{1}{(x+y)(x+z)}+\frac{2}{(x+y)(y+z)}+\frac{3}{(x+z)(y+z)} \right ]\)
\(=xyz.\frac{y+z+2(z+x)+3(x+y)}{(x+y)(y+z)(z+x)}=\frac{xyz(5x+4y+3z)}{(x+y)(y+z)(z+x)}\)

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)

4x(x+2)+3*2x(x-2)=5*2x(x+2)
=>\(4x\left(x+2\right)+6x\left(x-2\right)-10x\left(x+2\right)=0\)
=>\(-6x\left(x+2\right)+6x\left(x-2\right)=0\)
=>-x(x+2)+x(x-2)=0
=>-x(x+2-x+2)=0
=>-x=0
=>x=0
\(4x\left(x+2\right)+3\cdot2x\left(x-2\right)=5\cdot2x\left(x+2\right)\)
\(4x^2+8x+6x^2-12x=10x^2+20x\)
\(10x^2-4x=10x^2+20x\)
\(10x^2-4x-10x^2-20x=0\)
\(-24x=0\Rightarrow x=0\)