
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Lời giải:
a)
\(-3\frac{5}{8}+\left(-\frac{3}{8}+\frac{9}{4}\right)\)
\(=-\frac{29}{8}+\left(-\frac{3}{8}+\frac{18}{8}\right)\)
\(=-\frac{29}{8}+\frac{15}{8}=-\frac{14}{8}=-\frac{7}{4}\)
b) \(\frac{\left(-9\right)\cdot11+32\cdot\left(-9\right)}{\left(-43\right)\cdot15+12\cdot\left(-43\right)}=\frac{\left(-9\right)\left(11+32\right)}{\left(-43\right)\left(15+12\right)}=\frac{\left(-9\right)\cdot43}{\left(-43\right)\cdot27}=\frac{\left(-1\right)\cdot1}{\left(-1\right)\cdot3}=\frac{1}{3}\)
c) Thay \(x=\frac{2011}{2012}\)vào biểu thức \(x\cdot\frac{1}{3}+2x\cdot\frac{3}{6}-3x\cdot\frac{4}{9}\)ta có :
\(\frac{2011}{2012}\cdot\frac{1}{3}+2\cdot\frac{2011}{2012}\cdot\frac{3}{6}-3\cdot\frac{2011}{2012}\cdot\frac{4}{9}\)
\(=\frac{2011}{2012}\cdot\frac{1}{3}+2\cdot\frac{2011}{2012}\cdot\frac{1}{2}-3\cdot\frac{2011}{2012}\cdot\frac{4}{9}\)
\(=\frac{2011}{6036}+\frac{2011}{2012}-\frac{2011}{1509}\)
\(=\frac{2011}{6036}+\frac{6033}{6036}-\frac{8044}{6036}=\frac{2011+6033-8044}{6036}=0\)

\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=20.\frac{1}{60}=\frac{1}{3}\)
=> \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{60}>\frac{1}{3}\)


Sửa đề là chứng minh nha bạn.
Ta có: \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{1}{41}+\dfrac{1}{41}+\dfrac{1}{41}+...+\dfrac{1}{41}\)(40 phân số \(\dfrac{1}{41}\))
\(=\dfrac{1.40}{41}=\dfrac{40}{41}>\dfrac{7}{12}\) (*)
Từ (*) suy ra: \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{7}{12}^{\left(đpcm\right)}\)

Đặt S=\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}\)
Ta thấy S có 40 số hạng
ta có:
S=\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}\)=\(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)\)
\(+\left(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}\right)\)(mỗi 1 nhóm có 100 số hạng)
>\(\left(\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{70}+...+\frac{1}{70}\right)+\left(\frac{1}{80}+...+\frac{1}{80}\right)\)(mỗi 1 nhóm có 10 số hạng)
=\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\)=\(\frac{533}{840}\)>\(\frac{490}{840}\)=\(\frac{7}{12}\)
vậy S>\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}\)(đpcm)

7) ( 2x2+ 1)3= 729
=> ( 2x2+ 1)3 = 36
=> ( 2x2+ 1)3= 93
=> 2x2+ 1= 9
=> 2x2= 8
=> x2= 4
=> x= 2
8) ( 3x2- 43)3= 125
=> (3x2- 43)3= 53
=> 3x2- 43= 5
=> 3x2= 48
=> x2= 16
=> x= 4
Vậy x=4

( 3x - 6 ) . 3 = 81
3x - 6 = 81 : 3
3x - 6 = 27
3x = 27 + 6
3x = 33
x = 33 : 3
x = 11
(3x - 6) . 3 = 34
3x - 6 = 34 : 3
3x - 6 = 33
3x - 6 = 27
3x = 27 + 6
3x = 33
x = 33 : 3
x = 11
Sai đề: làm gì có phép tính nào như vậy
tại công thức của online math bị điên