Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 26 : Bài giải
a. Do AB⊥AC,HE⊥AB,HF⊥ACAB⊥AC,HE⊥AB,HF⊥AC
⇒ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o
→◊AEHF→◊AEHF là hình chữ nhật
→AH=EF
Mấy câu khác chưa học !

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
b: ΔHAB vuông tại H có HM vuông góc AB
nên MH^2=MA*MB

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\hat{HBA}\) chung
Do đó: ΔHBA~ΔABC
b: Ta có: CD//AB
=>\(\hat{CDH}=\hat{HAB}\) (hai góc so le trong)
mà \(\hat{HAB}=\hat{C}\left(=90^0-\hat{CAH}\right)\)
nên \(\hat{CDA}=\hat{ACB}\)
Ta có: CD//AB
AB⊥CA
Do đó: CD⊥CA
Xét ΔCDA vuông tại C và ΔACB vuông tại A có
\(\hat{CDA}=\hat{ACB}\)
Do đó: ΔCDA~ΔACB
=>\(\frac{CD}{AC}=\frac{CA}{AB}\)
=>\(AB\cdot CD=AC^2\)
c: ΔCHD vuông tại H
mà HK là đường trung tuyến
nên KH=KD
=>ΔKHD cân tại K
ΔHAB vuông tại H
mà HI là đường trung tuyến
nên IA=IH
=>ΔIAH cân tại I
Ta có: \(\hat{IHA}=\hat{IAH}\) (ΔIAH cân tại I)
\(\hat{KHD}=\hat{KDH}\) (ΔKDH cân tại K)
mà \(\hat{KDH}=\hat{HAI}\) (hai góc so le trong, CD//AB)
nên \(\hat{KHD}=\hat{AHI}\)
mà \(\hat{AHI}+\hat{IHD}=180^0\) (hai góc kề bù)
nên \(\hat{KHD}+\hat{IHD}=180^0\)
=>K,H,I thẳng hàng
1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
2: Xét ΔBKI vuông tại B và ΔABC vuông tại A có
góc BIK=góc ACB
=>ΔBKI đồng dạng vơi ΔABC