
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Tính số đo các góc BOD, DOE, COE
Dựa vào các số đo đã cho:
- ∠BOC = 42°
- ∠AOD = 97°
- ∠AOE = 56°
Giả sử các tia nằm trên cùng một mặt phẳng và theo thứ tự: B → O → C → D → E → A
Tính từng góc:
- ∠BOD = ∠AOD − ∠BOC = 97° − 42° = 55°
- ∠DOE = ∠AOE − ∠AOD = 56° − 97° = −41° → không hợp lý
→ Vậy ta lấy: ∠DOE = ∠AOD − ∠AOE = 97° − 56° = 41° - ∠COE = ∠BOD + ∠DOE = 55° + 41° = 96°
- b) Tia OD có phải là phân giác của góc COE không?
- Phân giác là tia chia góc thành hai phần bằng nhau.
- ∠COE = 96°, mà ∠BOD = 55°, ∠DOE = 41°
- Vì 55° ≠ 41°, nên tia OD không phải là phân giác của ∠COE

Số hữu tỉ dương: \(\frac{-3}{-5};\frac{2}{3}\)
Số hữu tỉ âm: \(\frac{-3}{7};\frac{1}{-5}\)
Số không phải là số hữu tỉ âm mà cũng không phải là số hữu tỉ âm: \(\frac{0}{-2}\)

góc xoy = 70 độ
góc xoz = 120 độ
số đo góc xoz :
xoz = 120 độ -70 độ = 50 độ
tia om là tia phân giác của góc xoy nên:
xom = xoy/2 = 70 độ /2 = 35 độ
tia on là tia phân giác của góc xoz nên:
xon = xoz/2 =120 độ/2 = 60 độ
góc mon là góc giữa tia om và on :
mon = 60 độ - 35 độ = 25 độ
két quả:
- Số đo góc \(yoz=50^{\circ}\)
- Số đo góc \(xom=35^{\circ}\)
- Số đo góc \(xon=60^{\circ}\)
- Số đo góc \(mon=25^{\circ}\)
Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\hat{xOy}<\hat{xOz}\left(70^0<100^0\right)\)
nên tia Oy nằm giữa hai tia Ox và Oz
=>\(\hat{xOy}+\hat{yOz}=\hat{xOz}\)
=>\(\hat{yOz}=100^0-70^0=30^0\)
Om là phân giác của góc xOy
=>\(\hat{xOm}=\hat{yOm}=\frac12\cdot\hat{xOy}=\frac12\cdot70^0=35^0\)
On là phân giác của góc xOz
=>\(\hat{xOn}=\hat{zOn}=\frac12\cdot\hat{xOz}=\frac12\cdot120^0=60^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\hat{xOm}<\hat{xOn}\left(35^0<60^0\right)\)
nên tia Om nằm giữa hai tia Ox và On
=>\(\hat{xOm}+\hat{mOn}=\hat{xOn}\)
=>\(\hat{mOn}=60^0-35^0=25^0\)

Bài 1:
a) Ta có:
\(\frac{-1}{3}< 0\)
\(\frac{1}{100}>0\)
\(\Rightarrow\frac{-1}{3}< \frac{1}{100}\)
b)Ta có;
\(\frac{-231}{232}>-1\)
\(\frac{-1321}{1320}< -1\)
\(\Rightarrow\frac{-231}{232}>\frac{-1321}{1320}\)
c) Ta có:
\(\frac{-27}{29}< 0\)
\(\frac{272727}{292929}>0\)
\(\Rightarrow\frac{-27}{29}< \frac{272727}{292929}\)
Bài 2:
\(a\left(b+1\right)=ab+a\)
\(b\left(a+1\right)=ab+b\)
Mà \(a< b\)
\(\Rightarrow a\left(b+1\right)< b\left(a+1\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)


Gọi 3 phần đó là x,y,z (phần này hình như đề cho rùi nhưng mk nói lại)
Theo bài ra, ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\) và x3 + y3 + z3 = 2456
và: \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\Rightarrow\)\(\frac{x^3}{\left(\frac{1}{2}\right)^3}=\frac{y^3}{\left(\frac{1}{3}\right)^3}=\frac{z^3}{\left(\frac{1}{4}\right)^3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x^3}{\left(\frac{1}{2}\right)^3}=\frac{y^3}{\left(\frac{1}{3}\right)^3}=\frac{z^3}{\left(\frac{1}{4}\right)^3}=\frac{x^3+y^3+z^3}{\left(\frac{1}{2}\right)^3+\left(\frac{1}{3}\right)^3+\left(\frac{1}{4}\right)^3}=\frac{2456}{\frac{307}{1728}}=13824\)
suy ra: \(\frac{x^3}{\left(\frac{1}{2}\right)^3}=13824\Rightarrow x^3=13824\cdot\left(\frac{1}{2}\right)^3=1728\Rightarrow x=12\)
\(\frac{y^3}{\left(\frac{1}{3}\right)^3}=13824\Rightarrow y^3=13824\cdot\left(\frac{1}{3}\right)^3=512\Rightarrow y=8\)
\(\frac{z^3}{\left(\frac{1}{4}\right)^3}=13824\Rightarrow z^3=13824\cdot\left(\frac{1}{4}\right)^3=216\Rightarrow z=6\)
Vậy 3 phần đó lần lượt là: 12; 8; 6
\(-\dfrac{27}{8}:x=\left(\dfrac{3}{2}\right)^3\)
=>\(-\dfrac{27}{8}:x=\dfrac{27}{8}\)
=>\(x=-\dfrac{27}{8}:\dfrac{27}{8}=-1\)