K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P
Phong
CTVHS
15 giờ trước (12:30)

`2/(3xx5)+2/(5xx7)+...+2/(13xx15)+2/(1xx2)+2/(2xx3)+...+2/(9xx10)`

`=1/3-1/5+1/5-1/7+...+1/13-1/15+2(1/(1xx2)+1/(2xx3)+...+1/(9xx10))`

`=1/3-1/15+2(1-1/2+1/2-1/3+...+1/9-1/10)`

`=4/15+2(1-1/10)`

`=4/15+2*9/10`

`=4/15+9/5`

`=4/15+27/15`

`=31/15`

15 giờ trước (12:26)

gửi nhiều quá ko ai lm cho đâu

15 giờ trước (12:28)

Bài 3:

4; 45 + 5\(x\) = 10\(^3\): 10

45 + 5\(x\) = 100

5\(x\) = 100 - 45

5\(x\) = 55

\(x\) = 55 : 5

\(x\) = 11

Vậy \(x=11\)

5; 4\(x\) - 20 = 2\(^5\) : 2\(^2\)

4\(x\) - 20 = 2\(^3\)

4\(x\) = 8 + 20

4\(x\) = 28

\(x\) = 28 : 4

\(x=7\)

Vậy \(x=7\)

6 giờ trước (20:53)

Bài 23:

a+4b⋮13

=>10(a+4b)⋮13

=>10a+40b⋮13

=>10a+b+39b⋮13

mà 39b⋮13

nên 10a+b⋮13

6 giờ trước (20:56)

bạn nên chụp rõ hơn để lời giải có kết quả tốt nhất nhé bạn!

6 giờ trước (21:25)

Câu 8:

a:Sửa đề: \(4+4^2+\cdots+4^{2025}\)

Ta có: \(4+4^2+\cdots+4^{2025}\)

\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+\cdots+\left(4^{2023}+4^{2024}+4^{2025}\right)\)

\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+\cdots+4^{2023}\left(1+4+4^2\right)\)

\(=21\left(4+4^4+\cdots+4^{2023}\right)\) ⋮21

b: \(5+5^2+5^3+5^4+\cdots+5^{2024}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{2023}+5^{2024}\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+\cdots+5^{2022}\left(5+5^2\right)\)

\(=30\left(1+5^2+\cdots+5^{2022}\right)\) ⋮30

Câu 7:

a: \(A=2+2^2+2^3+\cdots+2^{99}\)

=>\(2A=2^2+2^3+\cdots+2^{100}\)

=>\(2A-A=2^2+2^3+\cdots+2^{100}-2-2^2-\cdots-2^{99}\)

=>\(A=2^{100}-2\)

b: \(B=1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)

=>\(7B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}\)

=>\(7B+B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}+1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)

=>\(8B=-7^{50}+1\)

=>\(B=\frac{-7^{50}+1}{8}\)

Câu 4:

a: \(x^3=125\)

=>\(x^3=5^3\)

=>x=5

b: \(11^{x+1}=121\)

=>\(11^{x+1}=11^2\)

=>x+1=2

=>x=2-1=1

c: \(\left(x-5\right)^3=27\)

=>\(\left(x-5\right)^3=3^3\)

=>x-5=3

=>x=3+5=8

d: \(4^5:4^{x}=16\)

=>\(4^{x}=4^5:16=4^5:4^2=4^3\)

=>x=3

e: \(5^{x-1}\cdot8=1000\)

=>\(5^{x-1}=1000:8=125=5^3\)

=>x-1=3

=>x=3+1=4

f: \(2^{x}+2^{x+3}=72\)

=>\(2^{x}+2^{x}\cdot8=72\)

=>\(2^{x}\cdot9=72\)

=>\(2^{x}=\frac{72}{9}=8=2^3\)

=>x=3

g: \(\left(3x+1\right)^3=343\)

=>\(\left(3x+1\right)^3=7^3\)

=>3x+1=7

=>3x=6

=>x=2

h: \(3^{x}+3^{x+2}=270\)

=>\(3^{x}+3^{x}\cdot9=270\)

=>\(10\cdot3^{x}=270\)

=>\(3^{x}=\frac{270}{10}=27=3^3\)

=>x=3

i: \(25^{2x+4}=125^{x+3}\)

=>\(\left(5^2\right)^{2x+4}=\left(5^3\right)^{x+3}\)

=>\(5^{4x+8}=5^{3x+9}\)

=>4x+8=3x+9

=>x=1

Câu 6:

1 giờ=3600 giây

Số tế bào hồng cầu được tạo ra sau mỗi giờ là:

\(25\cdot10^5\cdot3600=25\cdot36\cdot10^7=900\cdot10^7=9\cdot10^9\) =9 tỉ (tế bào)

6 giờ trước (21:22)

Câu 8:

a:Sửa đề: \(4+4^2+\cdots+4^{2025}\)

Ta có: \(4+4^2+\cdots+4^{2025}\)

\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+\cdots+\left(4^{2023}+4^{2024}+4^{2025}\right)\)

\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+\cdots+4^{2023}\left(1+4+4^2\right)\)

\(=21\left(4+4^4+\cdots+4^{2023}\right)\) ⋮21

b: \(5+5^2+5^3+5^4+\cdots+5^{2024}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{2023}+5^{2024}\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+\cdots+5^{2022}\left(5+5^2\right)\)

\(=30\left(1+5^2+\cdots+5^{2022}\right)\) ⋮30

Câu 7:

a: \(A=2+2^2+2^3+\cdots+2^{99}\)

=>\(2A=2^2+2^3+\cdots+2^{100}\)

=>\(2A-A=2^2+2^3+\cdots+2^{100}-2-2^2-\cdots-2^{99}\)

=>\(A=2^{100}-2\)

b: \(B=1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)

=>\(7B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}\)

=>\(7B+B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}+1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)

=>\(8B=-7^{50}+1\)

=>\(B=\frac{-7^{50}+1}{8}\)

5 giờ trước (21:54)

Câu 7

a) \(A=2+2^2+2^3+\ldots+2^{99}\).
Đây là cấp số nhân từ \(2^{1}\) đến \(2^{99}\). Tổng:

\(A = \sum_{k = 1}^{99} 2^{k} = \frac{2 \left(\right. 2^{99} - 1 \left.\right)}{2 - 1} = 2 \left(\right. 2^{99} - 1 \left.\right) = 2^{100} - 2.\)

b) \(B=1-7+7^2-7^3+\ldots+7^{48}-7^{49}\).
Đây là tổng các \(7^{k}\) với dấu luân phiên, tức là tổng cấp số nhân với tỉ số \(r = - 7\), từ \(k = 0\) đến \(k = 49\):

\(B = \sum_{k = 0}^{49} \left(\right. - 1 \left.\right)^{k} 7^{k} = \sum_{k = 0}^{49} \left(\right. - 7 \left.\right)^{k} = \frac{1 - \left(\right. - 7 \left.\right)^{50}}{1 - \left(\right. - 7 \left.\right)} = \frac{1 - 7^{50}}{8} .\)

(Đó là dạng rút gọn chính xác.)

Câu 8

a) Dạng đề: \(1+4+4^2+4^3+\ldots+4^{2025}\) chia hết cho \(21\) ?

Hãy xét chu kỳ của \(4^{n}\) theo mod \(21\). Ta có

\(4^{1} \equiv 4 , 4^{2} \equiv 16 , 4^{3} = 64 \equiv 1 \left(\right. m o d 21 \left.\right) ,\)

vậy \(4^{3} \equiv 1 \left(\right. m o d 21 \left.\right)\) — nghĩa là dãy lũy thừa của 4 theo mod 21 có chu kỳ 3. Tổng mỗi nhóm ba số liên tiếp

\(4^{0} + 4^{1} + 4^{2} = 1 + 4 + 16 = 21 \equiv 0 \left(\right. m o d 21 \left.\right) .\)

Tập các số từ \(4^{0}\) đến \(4^{2025}\)\(2026\) số. Vì \(2026 = 3 \cdot 675 + 1\), nên ta có \(675\) nhóm 3 (mỗi nhóm tổng chia hết cho 21) và dư một số là \(4^{2025}\). Do \(2025\) chia hết cho \(3\), ta có \(4^{2025} \equiv 4^{0} \equiv 1 \left(\right. m o d 21 \left.\right)\).
Vậy tổng toàn bộ hợp lại

\(\equiv 675 \cdot 0 + 1 \equiv 1 \left(\right. m o d 21 \left.\right) ,\)

không chia hết cho \(21\).

Kết luận: Như đề bài viết (tới \(4^{2025}\)), tổng không chia hết cho \(21\).
(Có lẽ đề thực tế muốn mũ cuối là \(2024\) thay vì \(2025\); khi mũ cuối là \(2024\) thì có \(2025\) số, tức \(2025 = 3 \cdot 675\) nhóm đầy đủ nên tổng sẽ chia hết cho \(21\).)


b) Dạng đề: \(5 + 5^{2} + 5^{3} + \hdots + 5^{2024}\) chia hết cho \(30\) ?

Gọi \(S = \sum_{k = 1}^{2024} 5^{k}\). Ta kiểm tra chia hết cho \(2 , 3 , 5\) (vì \(30 = 2 \cdot 3 \cdot 5\)):

  • Chia cho \(5\): mỗi \(5^{k}\)\(5\) là thừa số, nên tổng \(S\) chia hết cho \(5\).
  • Chia cho \(2\): với modulo \(2\), \(5 \equiv 1\). Do đó mỗi \(5^{k} \equiv 1 \left(\right. m o d 2 \left.\right)\). Có \(2024\) số nên tổng theo modulo \(2\)\(2024 \cdot 1 \equiv 0 \left(\right. m o d 2 \left.\right)\). Vậy chia hết cho \(2\).
  • Chia cho \(3\): \(5 \equiv 2 \left(\right. m o d 3 \left.\right)\). Lũy thừa luân phiên: \(5^{1} \equiv 2 , \textrm{ }\textrm{ } 5^{2} \equiv 1 , \textrm{ }\textrm{ } 5^{3} \equiv 2 , \textrm{ }\textrm{ } 5^{4} \equiv 1 , \ldots\) (chu kỳ 2). Vì \(2024\) là số chẵn, các cặp \(\left(\right. 5^{2 m - 1} + 5^{2 m} \left.\right) \equiv 2 + 1 \equiv 0 \left(\right. m o d 3 \left.\right)\). Do đó tổng chia hết cho \(3\).

Từ đó \(S\) chia hết cho \(2 , 3 , 5\) đồng thời, nên chia hết cho \(30\).

Bài 5:

a: \(37\cdot146+46\cdot2-46\cdot37\)

\(=37\left(146-46\right)+46\cdot2\)

\(=37\cdot100+92=3700+92=3792\)

b: \(2\cdot5\cdot71+5\cdot18\cdot2+10\cdot11\)

\(=10\cdot71+10\cdot18+10\cdot11\)

\(=10\left(71+18+11\right)=10\cdot100=1000\)

c: \(135+360+65+40\)

=135+65+360+40

=200+400

=600

d: \(27\cdot75+25\cdot27-450\)

\(=27\left(75+25\right)-450\)

=2700-450

=2250

Bài 4:

a: \(32\cdot163+32\cdot837\)

\(=32\cdot\left(163+837\right)\)

\(=32\cdot1000=32000\)

b: \(2\cdot3\cdot4\cdot5\cdot25=2\cdot5\cdot4\cdot25\cdot3=3\cdot10\cdot100=3000\)

c: \(25\cdot27\cdot4=27\cdot100=2700\)

Bài 3:

a: \(128\cdot19+128\cdot41+128\cdot40\)

\(=128\cdot\left(19+41+40\right)=128\cdot100=12800\)

b: \(375+693+625+307\)

=375+625+693+307

=1000+1000

=2000

c: \(37+42-37+22\)

=37-37+42+22

=0+64

=64

d: \(21\cdot32+21\cdot68\)

\(=21\cdot\left(32+68\right)=21\cdot100=2100\)

Bài 2:

a: \(17\cdot85+15\cdot17-120\)

\(=17\left(85+15\right)-120\)

=1700-120

=1580

b: \(189+73+211+127\)

=189+211+73+127

=400+200

=600

c: \(38\cdot73+27\cdot38\)

\(=38\left(73+27\right)=38\cdot100=3800\)

Bài 1:

a: \(28\cdot76+23\cdot28-28\cdot13\)

\(=28\left(76+23-13\right)=28\cdot86=2408\)

b: \(39\cdot50+25\cdot39+75\cdot61\)

\(=39\left(50+25\right)+75\cdot61\)

\(=39\cdot75+75\cdot61=75\left(39+61\right)=75\cdot100=7500\)

c: \(32\cdot163+837\cdot32\)

\(=32\left(163+837\right)=32\cdot1000=32000\)

d: \(63+118+37+82\)

=63+37+118+82

=100+200

=300

22 tháng 8

Câu c:

C = \(9^{2n+1}\) + 1

CM C ⋮ 10

Giải:

9 ≡ -1 (mod 10)

\(9^{2n+1}\) ≡ -1\(^{2n+1}\) (mod 10)

9\(^{2n+1}\) ≡ -1 (mod 10)

1 ≡ 1 (mod 10)

Cộng vế với vế ta có:

9\(^{2n+1}\) + 1 ≡ (-1) + 1 (mod 10)

9\(^{2n+1}\) + 1 ≡ 0 (mod 10)

C = 9\(^{2n+1}\) + 1 ⋮ 10 (đpcm)





\(n^2+n=n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp

=>\(n^2+n\) chỉ có thể có tận cùng là 0;2;6

=>\(n^2+n+1\) sẽ có tận cùng là 1;3;7

\(1995^{2000}\) có chữ số tận cùng là 5

nên \(n^2+n+1\) sẽ không chia hết cho \(1995^{2000}\)

S
22 tháng 8

bài 14:

\(a.\left(x-1\right)\cdot100=0\)

\(x-1=0\Rightarrow x=1\)

\(b.200-11x=24\)

\(11x=200-24\)

\(11x=176\)

\(x=\frac{176}{11}=16\)

\(c.165:\left(2x+1\right)=15\) (đkxđ: x khác \(-\frac12)\)

\(2x+1=\frac{165}{15}=11\)

\(2x=11-1=10\)

\(x=\frac{10}{2}=5\)

\(d.375:\left(45-4x\right)=15\) (đkxđ: \(x\ne\frac{45}{4})\)

\(45-4x=\frac{375}{15}=25\)

\(4x=45-25=20\)

\(x=20:4=5\)

bài 15:

giá tiền 125 chiếc điện thoại là:

125 x 2350000=293750000 (đồng)

giá tiền 250 chiếc máy tính bảng là:

250 x 4950000 = 1237500000 (đồng)

tổng số tiền mà cửa hàng phải trả cho số điện thoại và máy tính trên là:

293750000 + 1237500000 = 1531250000 (đồng)

đáp số: 1531250000 đồng