1,tìm x,y,z,t biết x^2+y^2+9z^2+t^2+10=4x-2y-6z-4t

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2015

Đề đúng

\(x^2+y^2+z^2=4x-2y+6z-14\)

\(\Leftrightarrow x^2+y^2+z^2-4x+2y-6z+14=0\)

\(\Leftrightarrow x^2-4x+4+y^2+2y+1+z^2-6z+9=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)

\(\Leftrightarrow x-2=0;y+1=0;z-3=0\)

\(\Leftrightarrow x=2;y=-1;z=3\)

25 tháng 7 2015

c)  x2-2xy+2y2+2y+1

=(x2-2xy+y2)+(y2+2y+1)

=(x-y)2+(y+1)2

d)   4x2-12x-y2+2y+8

=(4x2-12x+9)-(y2+2y+1)

=(2x-3)2-(y-1)2

 

25 tháng 7 2015

a)  x2+10x+26+y2+2y

=(x2+10x+25)+(1+y2+2y)

=(x+5)2+(y+1)2

b)z2-6z+9-4-t2-4t

=(z-3)2-(t+2)2

 

14 tháng 7 2019

\(x^2+y^2+z^2=4x-2y+6z-14\Leftrightarrow x^2-4x+y^2+2y+z^2-6z+14=0\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+\left(z^2-6z+9\right)=0\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0matkhac:\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(z-3\right)^2\ge0\end{matrix}\right.\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2\ge0mà:\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\\\left(z-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\\z=3\end{matrix}\right..Vậy:x=2;y=-1;z=3\)

29 tháng 6 2015

1)a)x2+10x+26+y2+2y

=(x2+10x+25)+(y2+2y+1)

=(x+5)2+(y+1)2

b)x2-2xy+2y2+2y+1

=(x2-2xy+y2)+(y2+2y+1)

=(x-y)2+(y+1)2

c)z2-6z+13+t2+4t

=(z2-6z+9)+(t2+4t+4)

=(z-3)2+(t+2)2

d)4x2+2z2-4xz-2z+1

=(4x2-4xz+z2)+(z2-2z+1)

=(2x-z)2+(z-1)2

2)a)(x-3)2-4=0

<=>(x-3-2)(x-3+2)=0

<=>(x-5)(x-1)=0

<=>x-5=0 hoặc x-1=0

<=>x=5 hoặc x=1

b)x2-2x=24

<=>x2-2x-24=0

<=>(x2-6x)+(4x-24)=0

<=>x(x-6)+4(x-6)=0

<=>(x-6)(x+4)=0

<=>x-6=0 hoặc x+4=0

<=>x=6 hoặc x=-4

29 tháng 6 2015

a) x^2 + 10x + 26 + y^2 + 2y

=x2+10x+25+y2+2y+1

=x2+2.x.5+52+y2+2.y.1+12

=(x+5)2+(y+1)2

b)x^2 - 2xy + 2y^2 + 2y +1

=x2-2xy+y2+y2+2y+1

=(x-y)2+(y+1)2

c)z^2 - 6z + 13 + t^2 + 4t

=z2-6z+9+t2+4z+4

=z2-2.z.3+32+t2+2.t.2+22

=(z-3)2+(t+2)2

d)4x^2 + 2z^2 - 4xz - 2z + 1

=4x2-4xz+z2+z2-2z+1

=(2x)2-2.2x.z+z2+z2-2z.1+12

=(2x-z)2+(z-1)2

19 tháng 8 2020

a) \(x^2+10x+26+y^2+2y\)

\(=x^2+2.5x+25+1+y^2+2y\)

\(=\left(x^2+2.5x+25\right)+\left(1+2y+y^2\right)\)

\(=\left(x+5\right)^2+\left(1+y\right)^2\)

b) \(x^2-2xy+2y^2+2y+1\)

\(=x^2-2xy+y^2+y^2+2y+1\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)

\(=\left(x-y\right)^2+\left(y+1\right)^2\)

c) \(z^2-6z+13+t^2+4t\)

\(=z^2-2.3z+9+4+t^2+4t\)

\(=\left(z^2-2.3x+9\right)+\left(4+4t+t^2\right)\)

\(=\left(z-3\right)^2+\left(2+t\right)^2\)

d) \(4x^2+2z^2-4xz-2z+1\)

\(=4x^2+z^2+z^2-4xz-2z+1\)

\(=\left(4x^2-4xz+z^2\right)+\left(z^2-2z+1\right)\)

\(=\left(2x-z\right)^2+\left(z-1\right)^2\)

13 tháng 9 2019

bài này phải có 3 pt mới ra

bài 1:

a) x2 + 10x + 26 + y2 + 2y

= (x2 + 10x + 25) + (y2 + 2y + 1)

= (x + 5)2 + (y + 1)2

b) z2 - 6z + 5 - t2 - 4t

= (z - 3)2 - (t + 2)2

c) x2 - 2xy + 2y2 + 2y + 1

= (x2 - 2xy + y2) + (y2 + 2y + 1)

= (x - y)2 + (y + 1)2

d) 4x2 - 12x - y2 + 2y + 1

= (4x2 - 12x ) - (y2 + 2y + 1)

= ......................................

ok mk nhé!! 4545454654654765765767587876968345232513546546575675767867876876877687975675