Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Muốn viết tất cả các số tự nhiên từ 100 đến 999 phải dùng hết bao nhiên chữ số 5?
giải
ta có 100 chia hết cho 5
và số lớn nhất chia hết cho 5 trong dãy số này là:
995
vì cứ mỗi số chia hết cho 5 thì cách 5 đơn vị thì lại là một số chia hết cho 5
nên
từ 100-995 có số chữ số 5 là:
(995-100):5+1=180(số)
đáp số:180 số
đúng thì thanks mình nhé!
a)\(A=x^2-8x+9\)
\(A=x^2-8x+16-7\)
\(A=\left(x-4\right)^2-7\le-7\)
Dấu = xảy ra khi x - 4 = 0 ; x= 4
vậy Min A = -7 khi x =4

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

bạn phải tách từng câu ra. chứ kiểu này k ai trả lời cho đâu
2)
a)x2-y2=(x+y).(x-y)=(87+13).(87-13)=100.74=7400
b)x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000
c)x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000
4)
a)x2-6x+10=x2-6x+9+1=(x-3)2+1>=1>0 voi moi x
b)4x-x2-5= -(x2-4x+5)= -(x2-4x+4+1)= -(x-2)2 - 1<0 voi moi x

Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)
Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm
a) \(A=x^2-8x+17=\left(x-4\right)^2+1\ge1\)
Vậy MIN A = 1 khi x = 4
b) \(T=x^2-4x+7=\left(x-2\right)^2+3\ge3\)
Vậy MIN T = 3 khi x = 2
c) \(H=3x^2+6x-1=3\left(x+1\right)^2-4\ge-4\)
Vậy MIN H = -4 khi x = -1
d) \(E=x^2+y^2-4\left(x+y\right)+16=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)
Vậy MIN E = 8 khi x = y = 2
e) \(K=4x^2+y^2-4x-2y+3=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)
Vậy MIN K = 1 khi x = 1/2; y = 1
f) \(M=\frac{3}{2}x^2+x+1=\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)
Vậy MIN M = 5/6 khi x = -1/3

a) \(A=\left(x^2-2.2x+4\right)-3\)
\(A=\left(x-2\right)^2-3\ge-3\Leftrightarrow x=2\)
Vậy minA = -3 khi x = 2
b) \(B=4x^2+4x+11\)
\(B=\left(\left(2x\right)^2+2x.1+1\right)+10\)
\(B=\left(2x+1\right)^2+10\ge10\Leftrightarrow x=-\frac{1}{2}\)
Vậy min B = 10 khi x = -1/2
c) \(C=\left(x11\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(C=\left(x-1\right)\left(x+6\right)\left(x+3\right)\left(x+2\right)\)
\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(C=\left(x^2+5x\right)^2-36\ge-36\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=0\end{matrix}\right.\)
Vậy MinC= -36 khi x =0 và x = -5
d) \(D=2x^2+y^2-2xy+2x-4y+9\)
\(D=y^2-2y\left(x+2\right)+\left(x+2\right)^2-x^2-4x-4+2x^2+2x+9\)
\(D=\left(y^2-y-x\right)^2+x^2-2x+5\)
\(D=\left(y^2-x-2\right)+\left(x-1\right)^2+4\ge4\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Vậy min D = 4 khi x = 1 và y = 3

\(a,A=3-4x-x^2\)
\(=-\left(x^2+4x+4\right)+7\)
\(=-\left(x+2\right)^2+7\)
Với mọi giá trị của x ta có:
\(\left(x+2\right)^2\ge0\Rightarrow-\left(x+2\right)^2\le0\)
\(\Rightarrow-\left(x+2\right)^2+7\le7\)
Vậy Max A = 7 khi \(x+2=0\Rightarrow x=-2\)
\(b,B=2x-x-3x^2=x-3x^2\)
\(=-3\left(x^2-\dfrac{1}{3}x+\dfrac{1}{36}\right)+\dfrac{1}{12}\)
\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\)
Với mọi giá trị của x ta có:
\(\left(x-\dfrac{1}{6}\right)^2\ge0\Rightarrow-3\left(x-\dfrac{1}{6}\right)^2\le0\)
\(\Rightarrow-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\le\dfrac{1}{12}\)
Vậy Max B = \(\dfrac{1}{12}\) khi \(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)
\(c,C=2-x^2-y^2-2\left(x+y\right)=2-x^2-y^2-2x-2y\)\(=4-\left(x^2+2x+1\right)-\left(y^2+2y+1\right)\)
\(=4-\left(x+1\right)^2-\left(y+1\right)^2\)
Với mọi giá trị của x , ta có:
\(\left(x+1\right)^2\ge0;\left(y+1\right)^2\ge0\)
\(\Rightarrow4-\left(x+1\right)^2-\left(y+1\right)^2\le4\)
Vậy Max C = 4 khi \(\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\)
\(d,D=-x^2+4x-9=-\left(x^2-4x+4\right)-5\) \(=-\left(x-2\right)^2-5\)
Với mọi giá trị của x ta có:
\(\left(x-2\right)^2\ge0\Rightarrow-\left(x-2\right)^2\le0\)
\(\Rightarrow-\left(x-2\right)^2-5\le-5\)
Vậy Max D = -5 khi \(x-2=0\Rightarrow x=2\)
\(e,E=-x^2+4x-y^2-12y+47\)
\(=-\left(x^2-4x+4\right)-\left(y^2+12y+36\right)+87\)
\(=-\left(x-2\right)^2-\left(y+6\right)^2+87\)
Với mọi giá trị của x ta có:
\(-\left(x-2\right)^2\le0;-\left(y+6\right)\le0\)
\(\Rightarrow-\left(x-2\right)^2-\left(y+6\right)^2+87\le87\)
Vậy Max E = 87
Để E = 87 thì \(\left\{{}\begin{matrix}x-2=0\\y+6=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-6\end{matrix}\right.\)
\(f,F=-x^2-x-y^2-3y+13\)
\(=-\left(x^2+x+\dfrac{1}{4}\right)-\left(y^2+3y+\dfrac{9}{4}\right)+\dfrac{31}{2}\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\left(y+\dfrac{3}{2}\right)^2+\dfrac{31}{2}\)
Với mọi giá trị của x ta có:
\(-\left(x+\dfrac{1}{2}\right)^2\le0;-\left(y+\dfrac{3}{2}\right)^2\le0\)
\(\Rightarrow-\left(x+\dfrac{1}{2}\right)^2-\left(y+\dfrac{3}{2}\right)^2+\dfrac{31}{2}\le\dfrac{31}{2}\)
Vậy Max F = \(\dfrac{31}{2}\) khi \(\left\{{}\begin{matrix}x+\dfrac{1}{2}=0\\y+\dfrac{3}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Bài 1.
a) A = -x2 - 4x - 2 = -( x2 + 4x + 4 ) + 2 = -( x + 2 )2 + 2
\(-\left(x+2\right)^2\le0\forall x\Rightarrow-\left(x+2\right)^2+2\le2\)
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxA = 2 <=> x = -2
b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
Đẳng thức xảy ra <=> x + 3/4 = 0 => x = -3/4
=> MaxB = 49/8 <=> x = -3/4
c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9
\(-\left(x+1\right)^2\le0\forall x\Rightarrow-\left(x+1\right)^2+9\le9\)
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MaxC = 9 <=> x = -1
d) D = -8x2 + 4xy - y2 + 3 = -( 4x2 - 4xy + y2 ) - 4x2 + 3 = -( 2x - y )2 - 4x2 + 3
\(\hept{\begin{cases}-\left(2x-y\right)^2\le0\forall x,y\\-4x^2\le0\forall x\end{cases}}\Rightarrow-\left(2x-y\right)^2-4x^2+3\le3\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x-y=0\\4x=0\end{cases}}\Rightarrow x=y=0\)
=> MaxD = 3 <=> x = y = 0
Bài 2.
a) A = x2 - 2x + 5 = ( x2 - 2x + 1 ) + 4 = ( x - 1 )2 + 4
\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+4\ge4\)
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinA = 4 <=> x = 1
b) B = x2 - x + 1 = ( x2 - 2.1/2.x + 1/4 ) + 3/4 = ( x - 1/2 )2 + 3/4
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> MinB = 3/4 <=> x = 1/2
c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
C = [( x - 1 )( x + 6 )][( x + 2 )( x + 3)]
C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
C = [ ( x2 + 5x ) - 6 ][ ( x2 + 5x ) + 6 ]
C = ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Đẳng thức xảy ra <=> \(x^2+5x=0\Rightarrow x\left(x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
=> MinC = -36 <=> x = 0 hoặc x = -5
d) D = x2 + 5y2 - 2xy + 4y + 3
D = ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2
D = ( x - y )2 + ( 2y + 1 )2 + 2
\(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\\left(2y+1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)
=> MinD = 2 <=> x = y = -1/2