Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
=
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
QM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
tóm lị là ABGHMN là sai

Gọi BD là phân giác của góc ABC(D∈AC)
ΔABC cân tại A
=>\(\hat{ABC}=\hat{ACB}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-36^0}{2}=72^0\)
BD là phân giác của góc ABC
=>\(\hat{ABD}=\hat{CBD}=\frac12\cdot\hat{ABC}=36^0\)
=>\(\hat{DAB}=\hat{DBA}\)
=>DA=DB
Xét ΔBDC có \(\hat{BDC}+\hat{BCD}+\hat{DBC}=180^0\)
=>\(\hat{BDC}=180^0-36^0-72^0=72^0\)
=>\(\hat{BDC}=\hat{BCD}\left(=72^0\right)\)
=>BC=BD
=>BC=BD=AD
Xét ΔBAC có BD là phân giác
nên \(\frac{DA}{DC}=\frac{AB}{BC}\)
mà AB=AC
nên \(\frac{BA}{BC}=\frac{DA}{DC}\)
=>\(\frac{BA}{BC}=\frac{BC}{AC-AD}=\frac{BC}{AC-BC}=\frac{BC}{AB-BC}\)
=>\(BC^2=BA\left(BA-BC\right)\)
=>\(BA^2-BA\cdot BC=BC^2\)
=>\(BA^2-BC^2=BA\cdot BC=AC\cdot BC\)
Gọi BD là phân giác của góc ABC(D∈AC)
ΔABC cân tại A
=>\(\hat{ABC}=\hat{ACB}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-36^0}{2}=72^0\)
BD là phân giác của góc ABC
=>\(\hat{ABD}=\hat{CBD}=\frac12\cdot\hat{ABC}=36^0\)
=>\(\hat{DAB}=\hat{DBA}\)
=>DA=DB
Xét ΔBDC có \(\hat{BDC}+\hat{BCD}+\hat{DBC}=180^0\)
=>\(\hat{BDC}=180^0-36^0-72^0=72^0\)
=>\(\hat{BDC}=\hat{BCD}\left(=72^0\right)\)
=>BC=BD
=>BC=BD=AD
Xét ΔBAC có BD là phân giác
nên \(\frac{DA}{DC}=\frac{AB}{BC}\)
mà AB=AC
nên \(\frac{BA}{BC}=\frac{DA}{DC}\)
=>\(\frac{BA}{BC}=\frac{BC}{AC-AD}=\frac{BC}{AC-BC}=\frac{BC}{AB-BC}\)
=>\(BC^2=BA\left(BA-BC\right)\)
=>\(BA^2-BA\cdot BC=BC^2\)
=>\(BA^2-BC^2=BA\cdot BC=AC\cdot BC\)

a: AC=AB=15cm
MC=15-9=6cm
Xét ΔBACcó BM là phân giác
nên AM/AB=MC/BC
=>6/BC=9/15=3/5
=>BC=10cm
b: Xét ΔABM và ΔACN có
góc ABM=góc ACN
AB=AC
góc BAM chung
=>ΔABM=ΔACN
=>AM=AN
Xét ΔABC có AN/AB=AM/AC
nên MN//BC
c: Xét ΔABC cóMN//BC
nên AM/AC=MN/BC
=>MN/10=9/15=3/5
=>MN=6cm