
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)
\(\Leftrightarrow16x^2-9-16x^2+40x-25=46\)
\(\Leftrightarrow40x=46+9+25=80\)
\(\Leftrightarrow x=2\)
b) \(\left(x+1\right)^3+2x-\left(x-1\right)^3-3\left[\left(x+1\right)^2+\left(x-1\right)^2\right]+5=0\)
\(=x^3+3x^2+3x+1+2x-x^3+3x^2-3x+1-3\left(x^2+2x+1+x^2-2x+1\right)+5=0\)
\(=6x^2+2x+2-3\left(2x^2+2\right)+5=0\)
\(\Leftrightarrow6x^2+2x+2-6x^2-6+5=0\)
\(\Leftrightarrow2x=-2+6-5=-1\)
\(\Leftrightarrow x=\frac{1}{2}\)

a, \(x\left(x+1\right)-x\left(x-5\right)=6\Leftrightarrow x^2+x-x^2+5x=6\)
\(\Leftrightarrow x=1\)
b, \(4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
c, \(x^2-\frac{1}{4}=0\Leftrightarrow\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\Leftrightarrow x=\pm\frac{1}{2}\)
d, \(5x^2=20x\Leftrightarrow5x^2-20x=0\Leftrightarrow5x\left(x-4\right)=0\Leftrightarrow x=0;4\)
e, \(4x^2-9-x\left(2x-3\right)=0\Leftrightarrow4x^2-9-2x^2=3x\Leftrightarrow2x^2-9-3x=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-3\right)=0\Leftrightarrow x=-\frac{3}{2};3\)
f, \(4x^2-25=\left(2x-5\right)\left(2x+7\right)\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow-2\left(2x+5\right)=0\Leftrightarrow x=-\frac{5}{2}\)
a) x( x + 1 ) - x( x - 5 ) = 6
⇔ x2 + x - x2 + 5x = 6
⇔ 6x = 6
⇔ x = 1
b) 4x2 - 4x + 1 = 0
⇔ ( 2x - 1 )2 = 0
⇔ 2x - 1 = 0
⇔ x = 1/2
c) x2 - 1/4 = 0
⇔ ( x - 1/2 )( x + 1/2 ) = 0
⇔ \(\orbr{\begin{cases}x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}}\Leftrightarrow x=\pm\frac{1}{2}\)
d) 5x2 = 20x
⇔ 5x2 - 20x = 0
⇔ 5x( x - 4 ) = 0
⇔ \(\orbr{\begin{cases}5x=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
e) 4x2 - 9 - x( 2x - 3 ) = 0
⇔ ( 2x - 3 )( 2x + 3 ) - x( 2x - 3 ) = 0
⇔ ( 2x - 3 )( 2x + 3 - x ) = 0
⇔ ( 2x - 3 )( x + 3 ) = 0
⇔ \(\orbr{\begin{cases}2x-3=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-3\end{cases}}\)
f) 4x2 - 25 = ( 2x - 5 )( 2x + 7 )
⇔ ( 2x - 5 )( 2x + 5 ) - ( 2x - 5 )( 2x + 7 ) = 0
⇔ ( 2x - 5 )( 2x + 5 - 2x - 7 ) = 0
⇔ ( 2x - 5 )(-2) = 0
⇔ 2x - 5 = 0
⇔ x = 5/2

1. \(\left(5x-1\right)\left(x-1\right)+6x-44=0\)
=> \(5x^2-5x-x+1+6x-44=0\)
=> \(5x^2-43=0\)
=> \(5x^2=43\)
=> \(x^2=43:5\)
=> \(x^2=\frac{43}{5}\)
=> \(\orbr{\begin{cases}x=\sqrt{\frac{43}{5}}\\x=-\sqrt{\frac{43}{5}}\end{cases}}\)
2. \(\left(2x+1\right)\left(4x^2-2x+1\right)+9=0\)
=> \(8x^3+1+9=0\)
=> \(8x^3+10=0\)
=> \(8x^3=-10\)
=> \(x^3=-10:8\)
=> \(x^3=-\frac{5}{4}\)
=> ko bt
2,\(\left(2x+1\right)\left(4x^2-2x+1\right)+9=0\)
\(\Rightarrow8x^3-4x^2+4x^2-2x+1+9=0\)
\(\Rightarrow8x^3+10=0\)
\(\Rightarrow x^3=\frac{-5}{4}\)
\(\Rightarrow x=\sqrt[3]{\frac{-5}{4}}\)
Vậy....

\(\frac{4}{2x+3}-\frac{7}{3x-5}=0\left(đkxđ:x\ne-\frac{3}{2};\frac{5}{3}\right)\)
\(< =>\frac{4\left(3x-5\right)}{\left(2x+3\right)\left(3x-5\right)}-\frac{7\left(2x+3\right)}{\left(2x+3\right)\left(3x-5\right)}=0\)
\(< =>12x-20-14x-21=0\)
\(< =>2x+41=0< =>x=-\frac{41}{2}\left(tm\right)\)
\(\frac{4}{2x-3}+\frac{4x}{4x^2-9}=\frac{1}{2x+3}\left(đk:x\ne-\frac{3}{2};\frac{3}{2}\right)\)
\(< =>\frac{4\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{4x}{\left(2x-3\right)\left(2x+3\right)}-\frac{2x-3}{\left(2x+3\right)\left(2x-3\right)}=0\)
\(< =>8x+12+4x-2x+3=0\)
\(< =>10x=15< =>x=\frac{15}{10}=\frac{3}{2}\left(ktm\right)\)

\(x^2+3x+2\) =\(x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\frac{5}{4}\)=\(\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu "=" xảy ra <=>\(x+\frac{3}{2}=0\)<=>\(x=-\frac{3}{2}\)
Bài 2:
a) \(x^2-4x+y^2+2y+5=0\)
=> \(\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
=>\(\left(x-2\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\)nên:
=>\(\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
b)\(2x^2+y^2-2xy+10x+25=0\)
=>\(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
=>\(\left(x-y\right)^2+\left(x+5\right)^2=0\)
Tới đây thì dễ nhá !

a/ \(5\left(3x+2\right)=4x+1\Leftrightarrow15x+10=4x+1\)
\(\Leftrightarrow11x=-9\Rightarrow x=-\frac{9}{11}\)
b/ ĐK: \(x\ne1\)
\(\frac{4x-5}{x-1}-\frac{2\left(x-1\right)}{x-1}-\frac{x}{x-1}=0\)
\(\Leftrightarrow4x-5-\left(2x-2\right)-x=0\)
\(\Leftrightarrow x-3=0\)
\(\Rightarrow x=3\)
c/ \(2x^3+4x^2+2x=0\)
\(\Leftrightarrow2x\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow2x\left(x+1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

giải
a)4x^2-20x-(4x^2+3x-4x-3)=5
4x^2-20x-4x^2-3x+4x+3=5
-19x+3=5
-19x=5-3
-189x=2
x=-2/19
mik giải luôn đó chứ ko viết đầu bài đâu
c)
2x(x-3)-2(x^2-4)=4
2x^2-6x-2x^2+8=4
-6x+8=44
-6x=4-8
-6x=-4
x=2/3
\(1+\left(2x-1\right)\left(4x-5\right)-4x^2=0\)
\(1+8x^2-14x+5-4x^2=0\)
\(4x^2-14x+6=0\)
\(2x^2-7x+3=0\)
\(2x^2-6x-x+3=0\)
\(2x\left(x-3\right)-\left(x-3\right)=0\)
\(\left(2x-1\right)\left(x-3\right)=0\)
\(2x-1=0\) hoặc \(x-3=0\)
\(2x=1\) hoặc \(x-3=0\)
\(x=\frac12\) hoặc \(x=3\)
Vậy \(x=\frac12\) hoặc \(x=3\)
1 + (2x - 1)(4x - 5) - 4x² = 0
1 + 8x² - 10x - 4x + 5 - 4x² = 0
4x² - 14x + 6 = 0
4x² - 2x - 12x + 6 = 0
(4x² - 2x) - (12x - 6) = 0
2x(2x - 1) - 6(2x - 1) = 0
(2x - 1)(2x - 6) = 0
2x - 1 = 0 hoặc 2x - 6 = 0
*) 2x - 1 = 0
2x = 1
*) 2x - 6 = 0
2x = 6
x = 6 : 2
x = 3
Vậy: