Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




đặt \(\sqrt{x-\sqrt{x^2-1}}=a\) và \(\sqrt{x+\sqrt{x^2-1}}=b\)
ta có hệ pt \(\hept{\begin{cases}ab=1\\\sqrt{a}+b=2\end{cases}}\)
đến đây cậu giải nốt nha

Điều kiện 1: (x7y+1)⋮(x+1)
Ta biến đổi biểu thức x7y+1 để tìm mối liên hệ với x+1. Ta có: x7≡(−1)7(modx+1)≡−1(modx+1). Do đó, x7y+1≡(−1)y+1(modx+1)≡1−y(modx+1). Theo điều kiện đề bài, (x7y+1)⋮(x+1), nên ta phải có (1−y)⋮(x+1). Vì x,y là các số nguyên dương, nên x+1≥2 và 1−y là một số nguyên. Vì y≥1, nên 1−y≤0. Nếu 1−y=0, thì y=1. Nếu 1−y<0, thì x+1 phải là ước của ∣1−y∣=y−1. Suy ra, x+1≤y−1, hay x+2≤y.
Tóm lại, từ điều kiện 1, ta có hai trường hợp: y=1 hoặc x+2≤y.
Điều kiện 2: (xy7−1)⋮(y−1)
Ta biến đổi biểu thức xy7−1 để tìm mối liên hệ với y−1. Ta có: y≡1(mody−1). Do đó, y7≡17(mody−1)≡1(mody−1). Suy ra, xy7−1≡x(1)−1(mody−1)≡x−1(mody−1). Theo điều kiện đề bài, (xy7−1)⋮(y−1), nên ta phải có (x−1)⋮(y−1). Vì x,y là các số nguyên dương, nên y−1≥0 và x−1 là một số nguyên. Nếu y−1=0, thì y=1. Trong trường hợp này, điều kiện chia hết luôn đúng với mọi số nguyên x. Nếu y−1>0, thì y−1≥1. Nếu x−1=0, thì x=1. Nếu x−1=0, thì y−1 phải là ước của ∣x−1∣. Suy ra, y−1≤∣x−1∣. Vì x,y là số nguyên dương nên x≥1,y≥1.
- Nếu x>1, thì x−1>0, nên y−1≤x−1, hay y≤x.
- Nếu x=1, thì x−1=0, điều kiện luôn đúng.
Tóm lại, từ điều kiện 2, ta có hai trường hợp: y=1 hoặc y≤x (khi y>1).
Kết hợp hai điều kiện
Bây giờ ta xét các trường hợp có thể xảy ra:
Trường hợp 1: y=1.
- Điều kiện 1: (x7⋅1+1)⋮(x+1)⟹(x7+1)⋮(x+1). Điều này luôn đúng vì x7+1=(x+1)(x6−x5+x4−x3+x2−x+1).
- Điều kiện 2: (x⋅17−1)⋮(1−1)⟹(x−1)⋮0. Điều này chỉ có ý nghĩa khi ta xét giới hạn. Tuy nhiên, nếu y−1=0, điều kiện chia hết (xy7−1)⋮(y−1) có thể được hiểu là (y−1) là ước của (xy7−1), nhưng ước của 0 không được xác định rõ ràng.
Tuy nhiên, ta có thể suy luận từ (x−1)⋮(y−1). Khi y=1, ta có (x−1)⋮0. Điều này có thể được hiểu là x−1 phải bằng 0. Do đó, x=1. Thử lại với (x,y)=(1,1):
- (17⋅1+1)⋮(1+1)⟹2⋮2 (Đúng).
- (1⋅17−1)⋮(1−1)⟹0⋮0 (Đúng). Vậy (1,1) là một cặp số thỏa mãn.
Trường hợp 2: y>1. Từ điều kiện 1, ta có x+2≤y. Từ điều kiện 2, ta có y≤x. Hai bất đẳng thức này mâu thuẫn nhau: x+2≤y≤x. Điều này chỉ có thể xảy ra nếu 2≤0, một điều vô lý. Vậy, không có cặp số nguyên dương nào khác thỏa mãn khi y>1.
Kết luận
Chỉ có một cặp số nguyên dương (x,y) thỏa mãn cả hai điều kiện là x=1 và y=1.
câu hỏi linh tinh
ko limh timh đâu nhé