K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 giờ trước (14:33)

2

14 giờ trước (14:46)

2

20 tháng 11 2016

a)Ta có:\(\left(p-a\right)\left(p-b\right)\le\frac{2p-b-a}{2}=\frac{c^2}{4}\)

Tương tự ta có: \(\left(p-a\right)\left(p-c\right)\le\frac{b^2}{4};\left(p-b\right)\left(p-c\right)\le\frac{c^2}{4}\)

\(\Rightarrow\left[\left(p-a\right)\left(p-b\right)\left(p-c\right)\right]^2\le\left(\frac{abc}{8}\right)^2\)

\(\Rightarrow\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\frac{abc}{8}\)

b)\(VT=\frac{2}{-a+b+c}+\frac{2}{a-b+c}+\frac{2}{a+b-c}\)

\(=\frac{1}{-a+b+c}+\frac{1}{a-b+c}+\frac{1}{a+b-c}+\frac{1}{-a+b+c}+\frac{1}{a-b+c}+\frac{1}{a+b-c}\)

\(\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

c giải sau ăn cơm đã

8 tháng 7 2020

\(\left(\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{x-1}\left(x\ge0;x\ne1\right)\)

\(< =>\left(\frac{\sqrt{x}+1+\sqrt{x}-1}{\sqrt{x}^2-1^2}\right):\frac{1}{x-1}\)

\(< =>\frac{2\sqrt{x}}{x-1}.\frac{x-1}{1}=2\sqrt{x}\)

chắc là đúng đấy ạ

8 tháng 7 2020

\(A=\frac{2}{\sqrt{2}+1}+\frac{1}{3+2\sqrt{2}}\)

\(=\frac{2\left(3+2\sqrt{2}\right)}{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}+\frac{\sqrt{2}+1}{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}\)

\(=\frac{6+4\sqrt{2}+\sqrt{2}+1}{3\sqrt{2}+2\sqrt{4}+3+2\sqrt{2}}=\frac{7+5\sqrt{2}}{3+4+5\sqrt{2}}=1\)

15 tháng 10 2016

Mình giải câu a thôi nha b,c,d tương tự

a/ để \(\frac{2}{x-1}\)nguyên thì x - 1 phải là ước nguyên của 2 hay (x - 1) = (-1, 1, -2, 2)

=> x = (0, 2, -1; 3)

22 tháng 12 2016

mình chịu

9 tháng 10 2018

Điều kiện để biểu thức có nghĩa là:

1) 5x - 10 ≥ 0

⇔ 5x ≥ 10

⇔ x ≥ 2.

2) 1 + x\(^2\) > 1 ∀ x

⇒ Luôn có nghĩa với mọi giá trị x

3) 3 - x ≥ 0 và 2 - x > 0

⇔ x < 3 và x < 2

⇔ x < 2

4) - 1 + x > 0

⇔ x > 1.

13 tháng 8 2019

bài 1
P=\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right)\)

=\(\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{...}-\frac{\left(x+\sqrt{x}+1\right)}{...}\right):\frac{\sqrt{x}-1}{2}\)

=\(\left(\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)

=\(\left(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)

=\(\left(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)

=\(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}.\frac{2}{\sqrt{x}-1}\)

=\(\frac{2}{x+\sqrt{x}+1}\)

P>0 dựa vào dkxd

13 tháng 8 2019

b giống a

13 tháng 8 2019

Bài 1:

a) P= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\) (x ≥ 0; x ≠ 4)

=\(\left(\frac{x+2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\cdot\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)

= \(\left(\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)

=\(\left(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)

=\(\frac{\left(\sqrt{x}-1\right)^2\cdot2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\)

=\(\frac{2}{x+\sqrt{x}+1}\)

b) Ta có: x ≥ 0 ⇒ \(\sqrt{x}\) ≥ 0

\(x+\sqrt{x}+1\) ≥ 1 > 0

mà 2 > 0 ⇒ \(\frac{2}{x+\sqrt{x}+1}\) > 0 ⇒ P > 0

Bài 2:

a) P= \(\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\) (x ≥ 0; x ≠ 1)

=\(\left(\frac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)

=\(\left(\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\right)\)

=\(\left(\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x-1}{x+\sqrt{x}+1}\right)\)

=\(\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\cdot\frac{x+\sqrt{x}+1}{x-1}\)

=\(\frac{1}{x-1}\)

b) Ta có: \(\sqrt{P}=\sqrt{\frac{1}{x-1}}\)

= \(\frac{1}{\sqrt{x-1}}\)

x = \(5+2\sqrt{3}\) (TM)

Thay x vào \(\sqrt{P}\) ta có:

\(\sqrt{P}=\frac{1}{\sqrt{5+2\sqrt{3}-1}}\)

=\(\frac{1}{\sqrt{4+2\sqrt{3}}}\)

=\(\frac{1}{\sqrt{3+2\sqrt{x}+1}}\)

=\(\frac{1}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)

=\(\frac{1}{\left|\sqrt{3}+1\right|}\)

=\(\frac{1}{\sqrt{3}+1}\)

= \(\frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-1\right)}\)

=\(\frac{\sqrt{3}-1}{2}\)

Vậy \(\sqrt{P}=\frac{\sqrt{3}-1}{2}\) khi x = \(5+2\sqrt{3}\)

24 tháng 11 2018

\(\sqrt{1-4x+4x^2}=5\). Bình phương hai vế,ta có:

\(PT\Leftrightarrow1-4x+4x^2=25\)

\(\Leftrightarrow-4x+4x^2=24\Leftrightarrow4\left(-x+x^2\right)=24\)

\(\Leftrightarrow x^2-x=6\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\) 

21 tháng 8 2017

đầu tiien, tìm đk của x ở dưới căn, tiếp theo, bình phương 2 vế ,thì vế trái sẽ mất dấu căn thức, còn vế phải thì tự tính. Khi mất dấu căn, bài toán sẽ trở nên bt, tính ra kết quả, đối chiếu đk tìm đc ở trên và kết luận. 4 bài trên , bài nào cx có thể lm như thế !

23 tháng 10 2019
https://i.imgur.com/59DavAU.jpg
23 tháng 10 2019

Mấy cái này chỉ đơn giản là sử dụng các phép biến đổi đơn giản của biểu thức chứa căn bậc hai thôi nên bạn chú ý xem lại các bài trong SGK là làm được rồi! Chúc bạn học tốt nhé! haha