K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9

B = |x - 1| + |x - 3|

Giá trị nhỏ nhất của B là 2 khi 1 ≤ x ≤ 3.

B=|x-1|+|x-3|

=|x-1|+|3-x|>=|x-1+3-x|=2∀x

Dấu '=' xảy ra khi (x-1)(x-3)<=0

=>1<=x<=3

22 tháng 10 2018

bùi thị ánh phương cute bạn tham khảo bài làm tương tự này nhé : Câu hỏi của bùi thị ánh phương cute - Toán lớp 7 - Học toán với OnlineMath

22 tháng 10 2018

anh ctv trả lời đúng r mà sao ko k lun cho nhanh

nhá

học tốt

21 tháng 8 2020

làm nốt câu này rồi đi ngủ 

\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)

Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN 

Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)

Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được : 

\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)

Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)

Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)

Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)

18 tháng 12 2017

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.

25 tháng 3 2020

a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10

Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)

hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)

27 tháng 3 2020
Cam on ban
22 tháng 10 2018

Áp dụng bất đẳng thức GTTĐ \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :

\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|\)

Thay x+y=5 vào A ta có :

\(A\ge\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)

Vậy Amin = 4 <=> x >=-1 và y >=2

23 tháng 10 2018

\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|4\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)

Vậy:\(A_{Min}=4\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\)

23 tháng 9 2020

a) B = | 2x - 3 | - 7

| 2x - 3 | ≥ 0 ∀ x => | 2x - 3 | - 7 ≥ -7

Đẳng thức xảy ra <=> 2x - 3 = 0 => x = 3/2

=> MinB = -7 <=> x = 3/2

C = | x - 1 | + | x - 3 |

= | x - 1 | + | -( x - 3 ) | 

= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2

Đẳng thức xảy ra khi ab ≥ 0

=> ( x - 1 )( 3 - x ) ≥ 0

=> 1 ≤ x ≤ 3

=> MinC = 2 <=> 1 ≤ x ≤ 3

b) M = 5 - | x - 1 |

- | x - 1 | ≤ 0 ∀ x => 5 - | x - 1 | ≤ 5

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MaxM = 5 <=> x = 1

N = 7 - | 2x - 1 |

- | 2x - 1 | ≤ 0 ∀ x => 7 - | 2x - 1 | ≤ 7 

Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2

=> MaxN = 7 <=> x = 1/2

8 tháng 7 2018

1,\(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge0+9=9\)

Nên GTNN của \(A\) là \(9\) đạt được khi \(x-0,4=0\Rightarrow x=0,4\)

2,\(\left|x+3\right|\ge0\Rightarrow-\left|x+3\right|\le0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}-0=\frac{1}{8}\)

Nên GTLN của \(B\) là \(\frac{1}{8}\) đạt được khi \(x+3=0\Rightarrow x=-3\)

8 tháng 7 2018

1.

\(A=\left|x-0,4\right|+9\)

Vì \(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge9\)

Vậy GTNN của A là 9 khi x = 0,4

2.

\(B=\frac{1}{8}-\left|x+3\right|\)

Vì \(\left|x+3\right|\ge0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}\)

Vậy GTLN của B là \(\frac{1}{8}\)khi x = -3