Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha

Giải :
Ta thấy : 1/11>1/20 ; 1/12>1/20 ; 1/13>1/20 ; ..... ; 1/19>1/20 ; 1/20=1/20
Vậy:
(1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20) > 1/20 x 10 = 10/20
Vậy S > 1/2
vì 1/11+1/12+1/13+...+1/20<1/2+1/2+1/2+...+1/2
mà 1/2=1/2+1/2+...+1/2<1/2
Từ 2 điều trên =>1/11+1/12+1/13+...+1/20=S<1/2

A = \(\left(\frac{1}{11}+\frac{1}{12}+.........+\frac{1}{20}\right)\) + \(\left(\frac{1}{21}+\frac{1}{22}+..........+\frac{1}{30}\right)\)+ \(\left(\frac{1}{31}+.....+\frac{1}{60}\right)\)+ ... + \(\frac{1}{70}\)
Nhận xét:
\(\frac{1}{11}\)+ \(\frac{1}{12}\)+ ........ + \(\frac{1}{20}\)> \(\frac{1}{20}\)+\(\frac{1}{20}\)+........+\(\frac{1}{20}\)> \(\frac{10}{20}\)>\(\frac{1}{2}\)
\(\frac{1}{21}+\frac{1}{22}+.......+\frac{1}{30}>\frac{30}{60}>\frac{1}{2}\)
\(\frac{1}{31}+......+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+.......+\frac{1}{60}>\frac{30}{60}>\frac{1}{2}\)
A > \(\frac{1}{2}+\frac{1}{3}+\frac{1}{2}+\frac{1}{61}+......+\frac{1}{70}>\frac{1}{2}+\frac{1}{3}+\frac{1}{2}>\frac{4}{3}\)

a: Ta có
A = \(\dfrac{1}{10}\) + \((\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + ...+ \(\dfrac{1}{100}\)\()\)
⇒ A > \(\dfrac{1}{10}\) + \((\dfrac{1}{100}\) + \(\dfrac{1}{100}\) + ...+ \(\dfrac{1}{100}\)\()\)90 số hạng
⇒ A > \(\dfrac{1}{10}\) + \(\dfrac{90}{100}\)
⇒ A > 1
vậy A > 1
b: ta có
S = (\(\dfrac{1}{21}\) + \(\dfrac{1}{22}\)+ \(\dfrac{1}{23}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{26}\) + \(\dfrac{1}{27}\)+ \(\dfrac{1}{28}\) + \(\dfrac{1}{29}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{31}\) + \(\dfrac{1}{32}\)+ \(\dfrac{1}{33}\) + \(\dfrac{1}{34}\) + \(\dfrac{1}{35}\))
⇒ S > (\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\)+ \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\)+ \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\)+ \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\))
⇔ S > \(\dfrac{5}{25}\)+\(\dfrac{5}{30}\)+\(\dfrac{5}{35}\)
⇔ S > \(\dfrac{1}{5}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{7}\)
⇔ S > \(\dfrac{107}{210}\)> \(\dfrac{105}{210}\)=\(\dfrac{1}{2}\)
vậy S > \(\dfrac{1}{2}\)
cho minh giai cho