K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.   Cho tam giac ABC vuong tai A duong cao AH.

      a) Biet AH= 6cm, BH= 4,5cm, tinh AB, AC, BC, HC;

      b) Biet AB= 6cm, BH= 3cm, tinh AH, AC, CH.

2.   Cho tam giac ABC vuong tai A duong cao AH. Tinh dien tich tam giac ABC, biet AH= 12cm, BH= 9cm.

3.   Cho tam giac ABC , biet BC= 7,5cm, CA= 4,5cm, AB= 6cm.

      a) Tam giac ABC la tam giac gi ? Tinh duong cao AH cua tam giac ABC;

      b) Tinh do dai cac doan thang BH, CH.

4.   Cho tam giac vuong voi cac canh goc vuong la 7 va 24. Ke duong cao ung voi canh huyen. Tinh do dai duong cao va cac doan thang

    duong cao do chia ra tren canh huyen

5.   Cho mot tam giac vuong, biet ti so hai canh goc vuong la \(\frac{5}{12}\), canh huyen la 26cm. Tinh do dai cac canh goc vuong va hinh chieu cua

    canh goc vuong tren canh huyen.

6.   Cho tam giac ABC vuong tai A. Biet \(\frac{AB}{AC}=\frac{5}{7}\), duong cao AH= 15cm. Tinh HB, HC.

7.   Cho hinh thang can ABCD (AB // CD) , biet AB= 26cm, CD= 10cm va duong cheo AC vuong goc voi canh ben BC. Tinh dien tich cua

     hinh thang ABCD

8.   Cho tam giac ABC  vuong tai A, AB= 12cm, AC= 16cm, phan giac AD, duong cao AH. Tinh do dai cac doan thang HB, HD, HC.

9.   Cho tam giac ABC  vuong tai A, phan giac AD, duong cao AH. Biet BD= 15cm, CD= 20cm. Tinh do dai cac doan BH, HC.

10. Cho tam giac ABC  vuong tai A, duong cao AH. Tinh chu vi cua tam giac ABC, biet AH= 14cm, \(\frac{HB}{HC}=\frac{1}{4}\).

11. Cho hinh thang vuong ABCD, goc A= goc D= 900, AB= 15cm, AD= 20cm, cac duong cheo AC va BD vuong goc voi nhau o O.

      a) Tinh do dai cac doan OB, OD;

      b) Tinh do dai duong cheo AC;

      c) Tinh dien tich hinh thang ABCD

 

7

trời ơi nhiều quá sao làm nổi nhìn thấy chán 

19 tháng 7 2015

1.   Cho tam giac ABC vuong tai duong cao AH.

      a) Biet AH= 6cm, BH= 4,5cm, tinh AB, AC, BC, HC;

      b) Biet AB= 6cm, BH= 3cm, tinh AH, AC, CH.

2.   Cho tam giac ABC vuong tai duong cao AH. Tinh dien tich tam giac ABC, biet AH= 12cm, BH= 9cm.

3.   Cho tam giac ABC , biet BC= 7,5cm, CA= 4,5cm, AB= 6cm.

      a) Tam giac ABC la tam giac gi ? Tinh duong cao AH cua tam giac ABC;

      b) Tinh do dai cac doan thang BH, CH.

4.   Cho tam giac vuong voi cac canh goc vuong la 7 va 24. Ke duong cao ung voi canh huyen. Tinh do dai duong cao va cac doan thang

    duong cao do chia ra tren canh huyen

5.   Cho mot tam giac vuong, biet ti so hai canh goc vuong la $\frac{5}{12}$512 , canh huyen la 26cm. Tinh do dai cac canh goc vuong va hinh chieu cua

    canh goc vuong tren canh huyen.

6.   Cho tam giac ABC vuong tai A. Biet $\frac{AB}{AC}=\frac{5}{7}$ABAC =57 , duong cao AH= 15cm. Tinh HB, HC.

7.   Cho hinh thang can ABCD (AB // CD) , biet AB= 26cm, CD= 10cm va duong cheo AC vuong goc voi canh ben BC. Tinh dien tich cua

     hinh thang ABCD

8.   Cho tam giac ABC  vuong tai A, AB= 12cm, AC= 16cm, phan giac AD, duong cao AH. Tinh do dai cac doan thang HB, HD, HC.

9.   Cho tam giac ABC  vuong tai A, phan giac AD, duong cao AH. Biet BD= 15cm, CD= 20cm.Tinh do dai cac doan BH, HC.

10. Cho tam giac ABC  vuong tai A, duong cao AH. Tinh chu vi cua tam giac ABC, biet AH= 14cm, $\frac{HB}{HC}=\frac{1}{4}$HBHC =14 .

11. Cho hinh thang vuong ABCD, goc A= goc D= 900, AB= 15cm, AD= 20cm, cac duong cheoAC va BD vuong goc voi nhau o O.

      a) Tinh do dai cac doan OB, OD;

      b) Tinh do dai duong cheo AC;

      c) Tinh dien tich hinh thang ABCD

 

2 tháng 7 2020

A B C H 5 7

Bài làm:

Vì tam giác ABC vuông tại A nên áp dụng định lý Pytago ta có:

\(BC^2=AB^2+AC^2=5^2+7^2=74\)

\(\Rightarrow BC=\sqrt{74}\approx8,6\left(cm\right)\)

Ta có: \(\Delta AHB~\Delta CAB\left(g.g\right)\)

vì: \(\hept{\begin{cases}\widehat{AHB}=\widehat{CAB}=90^0\\\widehat{B}:chung\end{cases}}\)

\(\Rightarrow\frac{AH}{AB}=\frac{CA}{BC}\Leftrightarrow AH.BC=AB.AC\)

\(\Leftrightarrow8,6AH=35\Rightarrow AH\approx4,07\left(cm\right)\)

Đây mk làm tròn xấp xỉ nhé!

Học tốt!!!!

2 tháng 7 2020

XÉT \(\Delta ABC\)VUÔNG TẠI A

\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)

THAY \(BC^2=5^2+7^2\)

\(BC^2=25+49\)

\(BC^2=74\)

\(\Rightarrow BC=\sqrt{74}\approx8,6\left(cm\right)\)

XÉT DIỆN TÍCH \(\Delta ABC\)VUÔNG CÓ

\(S_V=\frac{AB.AC}{2}\left(1\right)\)

XÉT DIỆN TÍCH \(\Delta ABC\)THƯỜNG CÓ

\(S_T=\frac{AH.BC}{2}\left(2\right)\)

CỘNG VẾ THEO VẾ (1) VÀ (2) 

\(\Leftrightarrow\frac{AB.AC}{2}=\frac{AH.BC}{2}\)

\(\Leftrightarrow AB.AC=AH.BC\)

THAY \(7.5=AH.8,6\)

\(\Leftrightarrow35=AH.8,6\)

\(\Leftrightarrow AH=35:8,6\approx4,07\left(cm\right)\)

21 tháng 7 2019

#)Giải :

A B C H

Lưu ý : Hình ảnh chỉ mang tính chất minh họa, không đúng 100% về kích thước 

Áp dụng hệ thức lượng vào tam giác vuông ABC :

\(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\Leftrightarrow\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{576}\)

Mà \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)

\(\Rightarrow\hept{\begin{cases}AB=30cm\\AC=40cm\end{cases}}\)

Áp dụng định lí Py - ta - go :

\(BC^2=AB^2+AC^2\Rightarrow BC^2=30^2+40^2=2500\Rightarrow BC=\sqrt{2500}=50\)

Tiếp tục áp dụng hệ thức lượng :

\(\Rightarrow\hept{\begin{cases}BH.BC=AB^2\\CH.BC=AC^2\end{cases}\Rightarrow\hept{\begin{cases}BH=18cm\\CH=32cm\end{cases}}}\)

Vậy BH = 18cm ; CH = 32cm

26 tháng 8

🔷 Đề bài:

Cho tam giác \(\triangle A B C\) vuông tại A, với \(A B < A C\), đường cao từ A là \(A H\).

a) Cho \(A C = 16 \textrm{ } \text{cm}\)\(B C = 20 \textrm{ } \text{cm}\). Giải tam giác ABC.

b) Gọi M là hình chiếu của H lên AB, K là hình chiếu của H lên AC.

Chứng minh:

\(B M + C K = B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)


🔹 Phần a) – Giải tam giác ABC

Dữ kiện:

  • Tam giác ABC vuông tại A ⇒ \(\angle A = 90^{\circ}\)
  • \(A B < A C\) ⇒ B là góc nhỏ hơn C ⇒ \(\angle B < \angle C\)
  • \(A C = 16 \textrm{ } \text{cm} , B C = 20 \textrm{ } \text{cm}\) (BC là cạnh huyền)
  • Cần tìm cạnh còn lại AB và các góc.

✳️ Tính cạnh AB:

Áp dụng định lý Pythagore cho tam giác vuông tại A:

\(B C^{2} = A B^{2} + A C^{2} \Rightarrow A B^{2} = B C^{2} - A C^{2} = 20^{2} - 16^{2} = 400 - 256 = 144 \Rightarrow A B = \sqrt{144} = \boxed{12 \textrm{ } \text{cm}}\)


✳️ Tính các góc B và C:

Sử dụng hàm lượng giác trong tam giác vuông:

  • Trong tam giác vuông tại A:

\(cos ⁡ B = \frac{A B}{B C} = \frac{12}{20} = \frac{3}{5} \Rightarrow \angle B = \left(cos ⁡\right)^{- 1} \left(\right. \frac{3}{5} \left.\right) \approx \boxed{53.13^{\circ}}\)\(\angle C = 90^{\circ} - \angle B \approx 90^{\circ} - 53.13^{\circ} = \boxed{36.87^{\circ}}\)


✅ Kết quả phần a:

\(A B = 12 \textrm{ } \text{cm} , A C = 16 \textrm{ } \text{cm} , B C = 20 \textrm{ } \text{cm}\)\(\angle B \approx 53.13^{\circ} , \angle C \approx 36.87^{\circ}\)


🔹 Phần b) – Chứng minh:

Gọi:

  • H là chân đường cao từ A
  • M là hình chiếu của H lên AB
  • K là hình chiếu của H lên AC

Cần chứng minh:

\(B M + C K = B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)


🎯 Chiến lược giải:

Chúng ta sẽ:

  1. Làm việc trong tam giác vuông tại A với đường cao AH
  2. Dựng các hình chiếu M, K
  3. Sử dụng lượng giác để biểu diễn độ dài các đoạn BM, CK
  4. Chứng minh đẳng thức

✳️ Bước 1: Ghi nhớ các quan hệ

Trong tam giác ABC vuông tại A:

  • Gọi \(A H \bot B C\)
  • \(H\) là chân đường cao từ A xuống BC
  • \(M\) là hình chiếu của H lên AB
  • \(K\) là hình chiếu của H lên AC

✳️ Bước 2: Tọa độ hóa (tùy chọn – hỗ trợ hình dung và tính toán):

Giả sử:

  • Đặt \(A \left(\right. 0 , 0 \left.\right)\)
  • Vì tam giác vuông tại A, ta đặt:
    • \(B \left(\right. 12 , 0 \left.\right)\) (nằm trên trục hoành)
    • \(C \left(\right. 0 , 16 \left.\right)\)

→ Khi đó:

  • \(A B = 12\)
  • \(A C = 16\)
  • \(B C = 20\) (đã đúng với phần a)

✳️ Bước 3: Tính AH

Dùng công thức đường cao trong tam giác vuông:

\(A H = \frac{A B \cdot A C}{B C} = \frac{12 \cdot 16}{20} = \frac{192}{20} = \boxed{9.6 \textrm{ } \text{cm}}\)


✳️ Bước 4: Tính BM và CK

Ta sẽ dùng công thức lượng giác để biểu diễn BM và CK.

Tam giác ABH vuông tại H:

  • Góc \(\angle A B H = \angle B\)
  • Trong tam giác vuông ABH:
    \(B M = A H \cdot cos ⁡ B\)

Tam giác ACH vuông tại H:

  • Góc \(\angle A C H = \angle C\)
  • Trong tam giác vuông ACH:
    \(C K = A H \cdot sin ⁡ B\)

(Vì tam giác vuông tại A, nên \(\angle C = 90^{\circ} - B\), nên \(cos ⁡ C = sin ⁡ B\))


✳️ Tính tổng:

\(B M + C K = A H \cdot \left(\right. cos ⁡ B + sin ⁡ B \left.\right)\)

Nhưng đề bài yêu cầu:

\(B M + C K = B C \cdot \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)


✳️ Liên hệ \(A H\) với \(cos ⁡ B\) và \(sin ⁡ B\):

Ta biết:

\(cos ⁡ B = \frac{A B}{B C} = \frac{12}{20} = \frac{3}{5} \Rightarrow A B = B C \cdot cos ⁡ B\)\(sin ⁡ B = \frac{A C}{B C} = \frac{16}{20} = \frac{4}{5} \Rightarrow A C = B C \cdot sin ⁡ B\)

Rồi:

\(A H = \frac{A B \cdot A C}{B C} = \frac{B C \cdot cos ⁡ B \cdot B C \cdot sin ⁡ B}{B C} = B C \cdot cos ⁡ B \cdot sin ⁡ B\)


Thay vào biểu thức:

\(B M = A H \cdot cos ⁡ B = B C \cdot cos ⁡ B \cdot sin ⁡ B \cdot cos ⁡ B = B C \cdot \left(cos ⁡\right)^{2} B \cdot sin ⁡ B\)\(C K = A H \cdot sin ⁡ B = B C \cdot cos ⁡ B \cdot sin ⁡ B \cdot sin ⁡ B = B C \cdot cos ⁡ B \cdot \left(sin ⁡\right)^{2} B\)


Tổng lại:

\(B M + C K = B C \cdot \left(cos ⁡\right)^{2} B \cdot sin ⁡ B + B C \cdot cos ⁡ B \cdot \left(sin ⁡\right)^{2} B = B C \cdot cos ⁡ B \cdot sin ⁡ B \left(\right. cos ⁡ B + sin ⁡ B \left.\right)\)

Nhưng đề bài là:

\(B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)

Nhận xét:

Dùng đẳng thức đáng nhớ:

\(a^{3} + b^{3} = \left(\right. a + b \left.\right) \left(\right. a^{2} - a b + b^{2} \left.\right)\)

Không giống trực tiếp.

Nhưng:

Từ trước:

\(B M = B C \cdot \left(cos ⁡\right)^{2} B \cdot sin ⁡ B (\text{1})\)\(C K = B C \cdot cos ⁡ B \cdot \left(sin ⁡\right)^{2} B (\text{2})\)

Tổng:

\(B M + C K = B C \cdot cos ⁡ B \cdot sin ⁡ B \left(\right. cos ⁡ B + sin ⁡ B \left.\right)\)

Mặt khác:

\(\left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B = \left(\right. cos ⁡ B + sin ⁡ B \left.\right) \left(\right. \left(cos ⁡\right)^{2} B - cos ⁡ B \cdot sin ⁡ B + \left(sin ⁡\right)^{2} B \left.\right) = \left(\right. cos ⁡ B + sin ⁡ B \left.\right) \left(\right. 1 - cos ⁡ B \cdot sin ⁡ B \left.\right)\)

⇒ Nhận thấy đề bài không yêu cầu rút gọn, chỉ cần biến đổi khéo biểu thức ban đầu về vế phải.


✅ Kết luận:

\(\boxed{B M + C K = B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)}\)

Chứng minh hoàn tất.

26 tháng 8

Tham khảo

7 tháng 4 2020

a) A,D,C C (O;AD)

=> DC _|_ CA

b) A,B,D C (O;AD)

=> BD _|_ AB

\(\Rightarrow\hept{\begin{cases}BD//CH\left(\perp AB\right)\\BH//CD\left(\perp AC\right)\end{cases}}\)

=> BHCD là hình bình hành

\(\Rightarrow\hept{\begin{cases}BH=DC\\BD=HC\end{cases}}\)

c) Gọi I là giao BC và AD => AI là đường trung tuyến của tam giác ABC và AHD

Mà trọng tâm của tam giác ABC và AHD đều thuộc AI và thỏa mãn \(\frac{AG}{AI}=\frac{2}{3}\)

=> 2 tam giác này cùng trọng tâm