K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

Chỉ hướng dẫn câu đại thôi nhé

Theo đề bài thì ta có hai giả thuyết sau

\(\hept{\begin{cases}x_1+y_1=x_2+y_2=...=x_{10}+y_{10}=10\\x_1+x_2+...+x_{10}=y_1+y_2+...+y_{10}\end{cases}}\)

Theo đề bài thì

\(x^2_1+x^2_2+...+x^2_{10}=y_1^2+y^2_2+...+y^2_{10}\)

\(\Leftrightarrow\left(x^2_1-y^2_1\right)+\left(x^2_2-y^2_2\right)+...+\left(x^2_{10}-y^2_{10}\right)=0\)

\(\Leftrightarrow10\left(x_1-y_1\right)+10\left(x_2-y_2\right)+...+\left(x_{10}-y_{10}\right)=0\)

\(\Leftrightarrow x_1+x_2+...+x_{10}-y_1-y_2-...-y_{10}=0\)ĐPCM 

20 tháng 2 2020

đề thấy có chút thiếu dữ liệu câu đầu ấy

mỗi đội đều chơi 9 trận với 9 đội khác và không có trận hòa

Do đó : x1 + y1 = x2 + y2 = .... = x10 + y10

Ta có : ( x12 + x22 + ... + x102 ) - ( y12 + y22 + ... + y102 )

= ( x12 - y12 ) + ( x22 - y22 ) + ... + ( x102 - y102 )

= 9 ( x1 - y1 + x2 - y2 + ... + x10 - y10 )

= 9 [ ( x1 + x2 + .... + x10 ) - ( y1 + y2 +...+ y10 ) ]

= 9 . 0

= 0

Vậy ....

2 tháng 6 2020

Một người đều chơi 9 trận với 9 người người khác không có trận hòa. 

Do đó: \(x_1+y_1=x_2+y_2=....=x_{10}+y_{10}=9\)

Mà tổng số trận thắng bằng tổng số trận thua do đó:

\(x_1+x_2+...+x_{10}=y_1+y_2+y_3+...+y_{10}\)

Ta có: \(\left(x_1^2+x_2^2+...+x_{10}^2\right)-\left(y_1^2+y_2^2+...+y_{10}^2\right)\)

\(=\left(x_1^2-y_1^2\right)+\left(x_2^2-y_2^2\right)+.....+\left(x_{10}^2-y_{10}^2\right)\)

\(=9\left(x_1-y_1\right)+9\left(x_2-y_2\right)+....+9\left(x_{10}-y_{10}\right)\)

\(=9\left(x_1-y_1+x_2-y_2+....+x_{10}-y_{10}\right)\)

\(=9\left[\left(x_1+x_2+...+x_{10}\right)-\left(y_1+y_2+y_3+....+y_{10}\right)\right]=0\)

Vậy \(x_1^2+x_2^2+...+x_{10}^2=y_1^2+y_2^2+....+y_{10}^2\)

Cho đường tròn (O) có dây cung BC khác đường kính. Trên (O) lấy điểm A sao cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Vẽ đường kính AA1 của (O). Gọi K là giao điểm thứ hai của đường thẳng AH và (O). 1. C/ m D là trung điểm củ HK2. Lấy điểm P đối xứng với điểm K qua đường thẳng AB. Chứng minh tứ giác AHBP nội tiếp được đường tròn 3. Gọi M là trung điểm của BC, Q...
Đọc tiếp

Cho đường tròn (O) có dây cung BC khác đường kính. Trên (O) lấy điểm A sao cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Vẽ đường kính AA1 của (O). Gọi K là giao điểm thứ hai của đường thẳng AH và (O). 

1. C/ m D là trung điểm củ HK

2. Lấy điểm P đối xứng với điểm K qua đường thẳng AB. Chứng minh tứ giác AHBP nội tiếp được đường tròn 

3. Gọi M là trung điểm của BC, Q là giao điểm của (O) và tia MH. Gọi T là giao điểm của đường thẳng QD và (O). C/m BT.AC=AB.CT

4. Kẻ đường kính A1A2 của đường tròn ngoại tiếp tam giác A1EF. CMR khi BC cố định, điểm A thay đổi trên (O) sao cho tam giác ABC nhọn (không cân tại A) thì đường thẳng A2H luôn đi qua một điểm cố định

Giúp mình hai câu cuối với!

0
11 tháng 9 2015

a.  Lấy điểm X trên tia đối của tia BC sao cho BX=DE, suy ra tam giác ABX bằng tam giác ADE (cạnh huyền, cạnh góc vuông). Do đó AX=AE. Xét tam giác vuông XAF, áp dụng hệ thức liên hệ giữa cạnh góc vuông và đường cao ta có \(\frac{1}{AX^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\to\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\)   không đổi. 

b.  Kẻ EH vuông góc với KF. Ta có \(\sin EKF\cdot\cos EFK+\sin EFK\cdot\cos EKF=\frac{EH\cdot FH}{KE\cdot EF}+\frac{KH\cdot EH}{KE\cdot EF}=\frac{EH\left(FH+KH\right)}{KE\cdot EF}=\frac{EH\cdot KF}{KE\cdot EF}\)
\(\frac{2S_{KEF}}{KE\cdot EF}=\frac{KA\cdot EF}{KE\cdot EF}=\frac{KA}{KE}=\sin\angle AEK=\cos\angle AKE.\)      (ĐPCM)

25 tháng 7 2017

cho hình thoi ABCD có canh .Qua C vẽ đường thẳng M cắt các tia đối của các tia BA và DA theo thứ tự E và F.CMR tổng 1/AE +1/AF không đổi với mọi vị trí nói trên cảu đường thẳng m

BÁC NÀO BK CHỈ MK VS

22 tháng 4 2020

gọi M là trung điểm của AF . Ta có OM là đường trung bình của tam giác ACF

\(=>OM//CF,OM=\frac{1}{2}CF\)

ta lại có \(OM//CF,CF\perp CD\left(gt\right)\)

\(=>OM\perp CD.Mà\left(AB//CD\right)\)

\(=>OM//BE\)(1)

mặt khác OM , AM là 2 đường cao của tam giác ABO

=> M là trực tâm của tam giác ABO 

=>\(BM\perp AC.Mà\left(EO\perp AC\right)=>BM//EO\left(2\right)\)

từ 1 zà 2 => tứ giác BMOE là hbh => OM=BE

ta có 

\(OM=BE;OM=\frac{1}{2}CF=>BE=\frac{1}{2}CF\left(and\right)BE//OM//CF\)

\(\Delta KCF\)có \(CF//BE=>\frac{KE}{KF}=\frac{BE}{CF}=\frac{1}{2}\)