Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.
Giải thích các bước giải:1 học sinh cần số ngày để hoàn thành dự án đó là:
36:12=3(học sinh)
cần số học sinh để hoàn thành dự án trong 8 ngày là:
3x8=24(học sinh)
2.
Gọi số sản phẩm làm được của ba tổ lần lượt là :x,y,z
Vì trong cùng một thời gian số sản ohaarm làm được sẽ tỉ lệ nghịch với số giờ hoàn thành 1 sản phẩm do đó, ta có:
2x=3y=4z suy ra x/1/2=y/1/3=z/1/4=x+z-y/1/2+1/4-1/3=30/5/12=72
suy ra x=72*1/2=36 (sản phẩm )
y=72*1/3=24 (sản phẩm )
z=72*1/4=18 (sản phẩm ) ------ cố nhìn nha cj
#rinz
Bài 1 : Giải
8 ngày kém 12 ngày số lần là :
8 : 12 = \(\frac{2}{3}\)( lần )
Cần số học sinh tham gia để có thể hoàn thành dự án đó trong 8 ngày là :
36 : \(\frac{2}{3}\)= 54 ( học sinh )
Đáp số : 54 học sinh
Bài 2
Gọi số sản phẩm 3 tổ cùng làm trong 1 khoảng thời gian là a,b, c sản phẩm ( a,b,c \(\inℕ^∗\))
Ta thấy thời igan hoàn thành 1 sản phẩm càng ngắn thì số sản phẩm làm ra trong 1 khoảng thời gian nhất định càng nhiều , nên đây là bài toán tỉ lệ nghịch .Số sản phẩm hoàn thành trong 1 khoảng thời gian tỉ lệ nghịch với thời gian hoàn thành 1 sản phẩm , nên ta có :
\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{4}}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{4}}=\frac{a+c-b}{\frac{1}{2}+\frac{1}{4}-\frac{1}{3}}=\frac{30}{\frac{5}{12}}=72\)
\(\Rightarrow\frac{a}{\frac{1}{2}}=72\Rightarrow a=72.\frac{1}{2}=36\)
\(\frac{b}{\frac{1}{3}}=\Rightarrow b=72.\frac{1}{3}=24\)
\(\frac{c}{\frac{1}{4}}=72\Rightarrow c=72.\frac{1}{4}=18\)
Như vậy trong cùng khoảng thời gian là 72 giờ tổ A làm được 36 sản phẩm ,tổ B làm được 24 sản phẩm , tổ C làm được 18 sản phẩm .

Câu 1 :
10 km = 10000 m
1 m dây nặng là :
43 : 5 =
10000 m dây nặng là :
10000 x 8,6 =

Gọi số sản phẩm của người thứ nhất là x, người thứ 2 là y ( x,y >0 ; sản phẩm)
Theo đề ra ta có: \(\frac{x}{8}=\frac{y}{5}\)và \(x-y=60\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{5}=\frac{x-y}{8-5}=\frac{60}{3}=20\)
Suy ra x=8.20=160; y=5.20=100
Vậy số sp người thứ nhất làm được là 160 sản phẩm; của người thứ 2 làm được là 100 sản phẩm
gọi số sản phẩm của 2 người công nhận là a,b .Theo đề bài cho , ta có a/8=b/5 rồi giải ra theo áp dụng tc của dãy tỉ số......

Bài 1:
Gọi số điểm kém, TB, khá và điểm giỏi của lớp 7A lần lượt là a,b,c,d
Theo đb ta có: a:b:c:d = 2:6:5:2 <=> a/2 = b/6 = c/5 = d/2
Có: (a+b) - (c+d) = 3
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/2 = b/6 = c/5 = d/2 = \(\frac{\left(a+b\right)-\left(c+d\right)}{\left(2+6\right)-\left(5+2\right)}\) = \(\frac{3}{1}\)= 3
=> a = 2.3 = 6; b = 6.3 = 18; c = 5.3 = 15; d = 2.3 = 6
=> Số học sinh kém là 6; TB là 18; khá là 15 và giỏi là 6

Gọi số sản phẩm của mỗi phân xưởng lần lượt là `x,y,z (x,y,z \in \text {N*})`
Vì số sản phẩm của mỗi phân xưởng lần lượt tỉ lệ với `3:5:7`
Nghĩa là: `x/3=y/5=z/7`
Tổng số sản phẩm mà `3` phân xưởng được giao là `60 000` sản phẩm
`-> x+y+z=60 000`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/3=y/5=z/7=(x+y+z)/(3+5+7)=60000/15=4000`
`-> x/3=y/5=z/7=4000`
`-> x=3*4000=12000`
`y=5*4000=20000`
`z=7*4000=28000`
Vậy, số sản phẩm của `3` phân xưởng đó lần lượt là `12000` sản phẩm, `20000` sản phẩm, `28000` sản phẩm.
Tổng tỉ lệ sản phẩm của 3 phân xưởng: 3 + 5 + 7 = 15
Số sản phẩm của phân xưởng 1: (60000 : 15) . 3 = 12000 ( sản phẩm)
Số sản phẩm của phân xưởng 3: (60000 :15) . 7 = 28000( sản phẩm)
Số sản phẩm của phân xưởng 2: (60000 : 15) . 5 = 20000 ( sản phẩm)

Gọi số sản phẩm của bạn Dương; Bách; Khôi lần lượt là x, y, z ( x, y, z là số tự nhiên > 0 ).
Theo bài ra ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)
và \(x+z-y=12\)
Áp dụng dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+z-y}{3+2-4}=\frac{12}{1}=12\)
=> \(\frac{x}{3}=12\Rightarrow x=12.3=36\)
\(\frac{y}{4}=12\Rightarrow y=48\)
\(\frac{z}{2}=12\Rightarrow z=24\)
Vậy số sản phẩm của Dương Bách Khôi lần lượt là 36; 48; 24 sản phẩm.
2: Gọi số lượng sản phẩm A,B,C công xưởng sản xuất ra lần lượt là a(sản phẩm),b(sản phẩm),c(sản phẩm)
(Điều kiện: a,b,c∈N*)
Số lượng sản phẩm A,B,C lần lượt tỉ lệ với 11;15;22
=>\(\frac{a}{11}=\frac{b}{15}=\frac{c}{22}\)
Tổng số lượng sản phẩm A và sản phẩm B nhiều hơn loại C là 8 sản phẩm nên a+b-c=8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{11}=\frac{b}{15}=\frac{c}{22}=\frac{a+b-c}{11+15-22}=\frac84=2\)
=>\(\begin{cases}a=2\cdot11=22\\ b=2\cdot15=30\\ c=2\cdot22=44\end{cases}\) (nhận)
Vậy: số lượng sản phẩm A,B,C công xưởng sản xuất ra lần lượt là 22(sản phẩm), 30(sản phẩm), 44(sản phẩm)
1: Gọi số học sinh giỏi Toán, Văn, Anh lần lượt là a(bạn),b(bạn),c(bạn)
(Điều kiện: a,b,c∈N*)
Số học sinh giỏi Toán, Văn, Anh lần lượt tỉ lệ với 2;7;6
=>\(\frac{a}{2}=\frac{b}{7}=\frac{c}{6}\)
Tổng số học sinh giỏi Toán và Văn là 27 bạn nên a+b=27
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{2}=\frac{b}{7}=\frac{c}{6}=\frac{a+b}{2+7}=\frac{27}{9}=3\)
=>\(\begin{cases}a=3\cdot2=6\\ b=3\cdot7=21\\ c=3\cdot6=18\end{cases}\) (nhận)
Vậy: số học sinh giỏi Toán, Văn, Anh lần lượt là 6(bạn), 21(bạn), 18(bạn)