
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a/ \(19⋮3-n\)
\(\Leftrightarrow3-n\inƯ\left(19\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3-n=1\\3-n=19\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=2\left(tm\right)\\n=-22\left(loại\right)\end{matrix}\right.\)
Vậy ...
b/ \(21⋮1-2n\)
\(\Leftrightarrow1-2n\inƯ\left(21\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}1-2n=1\\1-2n=21\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=-10\left(loại\right)\end{matrix}\right.\)
Vậy ...
c/ \(9⋮\left|n-1\right|\)
\(\Leftrightarrow\left|n-1\right|\inƯ\left(9\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|n-1\right|=9\\\left|n-1\right|=3\\\left|n-1\right|=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}n-1=9\\n-1=-9\end{matrix}\right.\\\left[{}\begin{matrix}n-1=3\\n-1=-3\end{matrix}\right.\\\left[{}\begin{matrix}n-1=1\\n-1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}n=10\\n=-8\left(lọai\right)\end{matrix}\right.\\\left[{}\begin{matrix}n=4\\n=-2\left(loại\right)\end{matrix}\right.\\\left[{}\begin{matrix}n=2\\n=0\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
d/ \(-15⋮3-2n\)
\(\Leftrightarrow3-2n\inƯ\left(-15\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3-2n=1\\3-2n=15\\3-2n=3\\3-2n=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=1\\n=-6\left(loại\right)\\n=0\\n=-1\left(loại\right)\end{matrix}\right.\)
Vậy...

Bài 1 :
a ) ( 2637 - n ) - ( 2\(^{10}\) - 7 ) = 15\(^2\) - 20
( 2637 - n ) - 1024 = 205
2637 - n = 205 + 1024
2637 - n =1229
n = 2637 - 1229
n =1408
b) n\(^3\) = n\(^9\)
<=> n = 1 hoặc n = 0
Vì nếu n > 1 => n khi nâng nên luỹ thừa 9 sẽ lớn hơn khi nâng lên luỹ thừa 3
Nếu n < 0 => n khi nâng nên luỹ thừa 3 sẽ lớn hơn hơn khi nâng lên luỹ thừa 9 .
Bài 2 : So sánh
a) 2\(^{15}\) và 3\(^{10}\)
2\(^{15}\) = \(\left(2^3\right)^5\) = 8\(^5\)
3\(^{10}\) = \(\left(3^2\right)^5\) = 9\(^5\)
Vì 9\(^5\) > 8\(^5\) nên \(3^{10}>2^{15}\)
b) 7 x 2\(^{2017}\) và 2\(^{2020}\)
Ta có : 7 x 2\(^{2017}\) < 8 x 2\(^{2017}\)
Mà 8 x \(2^{2017}\) = 2\(^3\) x 2\(^{2017}\) = 2\(^{2020}\)
Vậy : 7 x 2\(^{2017}\) < 2\(^{2020}\)
c) 21\(^{15}\) và 27\(^5\) x 49\(^8\)
21\(^{15}\) = 7\(^{15}\) x 3\(^{15}\)
27\(^5\) x 49\(^8\) = \(\left(3^3\right)^5\) x \(\left(7^2\right)^8\) = 3\(^{15}\) x 7\(^{16}\)
So sánh : 7\(^{15}\) x 3\(^{15}\) và 7\(^{16}\) x 3\(^{15}\)
=> 7\(^{16}\) x 3\(^{15}\) > \(7^{15}\) x 3\(^{15}\) . Vì 3\(^{15}\) = 3\(^{15}\) mà 7\(^{16}\) > 7\(^{15}\) => 7\(^{16}\) x 3\(^{15}\) > 7\(^{15}\) x 3\(^{15}\)
Vậy : 21\(^{15}\) < 27\(^5\) x 49\(^8\)

mk năm nay học lớp 8 mà mới chỉ học công thức thôi chứ chưa học (hoặc đã học mà quên mất) nhưng chứng minh cái này mk mới chỉ học công thức thôi chứ chứng minh bài toán tổng quánthì chịu

Bài 1:
a) Cho A = 1+14+...+142014
=> 14A = 14 + 142 +...+142015
=> 14A - A = 142015 - 1
13A = 142015 - 1
mà 13 A chia hết cho 13
=> đpcm
b) làm tương tự
c) 1+3+32 +...+32015 ( có 2016 số hạng)
= (1+3+32 +33) + ...+ (32012 + 32013 +32014 +32015)
= 40 + ...+ 32012.(1+3+32+33)
...
Bài 2:
N = 7+72 + 73 +...+ 7n
=> 7N = 72 + 73 +74 +...+ 7n+1
=> \(6N=7^{n+1}-7\)
Thay vào biểu thức
=> 7n+1 -7 + 7 = 22016
7n+1 = 22016
...

Bài 1:
b) Ta có:
\(16^5=2^{20}\)
\(\Rightarrow B=16^5+2^{15}=2^{20}+2^{15}\)
\(\Rightarrow B=2^{15}.2^5+2^{15}\)
\(\Rightarrow B=2^{15}\left(2^5+1\right)\)
\(\Rightarrow B=2^{15}.33\)
\(\Rightarrow B⋮33\) (Đpcm)
c) \(C=5+5^2+5^3+5^4+...+5^{100}\)
\(\Rightarrow C=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(\Rightarrow C=1\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{98}\left(5+5^2\right)\)
\(\Rightarrow\left(1+5^2+...+5^{98}\right)\left(5+5^2\right)\)
\(\Rightarrow C=Q.30\)
\(\Rightarrow C⋮30\) (Đpcm)
Bài 1 : a, \(A=1+3+3^2+...+3^{118}+3^{119}\)
\(A=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(A=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)
\(A=1.30+...+3^{116}.30=\left(1+...+3^{116}\right).30⋮3\)
Vậy \(A⋮3\)
b, \(B=16^5+2^{15}=\left(2.8\right)^5+2^{15}\)
\(=2^5.8^5+2^{15}=2^5.\left(2^3\right)^5+2^{15}\)
\(=2^5.2^{15}+2^{15}.1=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
Vậy \(B⋮33\)
c, Tương tự câu a nhưng nhóm 2 số
Bài 2 : a, \(n+2⋮n-1\) ; Mà : \(n-1⋮n-1\)
\(\Rightarrow\left(n+2\right)-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+2-n+1⋮n-1\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{1;3\right\}\Rightarrow n\in\left\{2;4\right\}\)
Vậy \(n\in\left\{2;4\right\}\) thỏa mãn đề bài
b, \(2n+7⋮n+1\)
Mà : \(n+1⋮n+1\Rightarrow2\left(n+1\right)⋮n+1\Rightarrow2n+2⋮n+1\)
\(\Rightarrow\left(2n+7\right)-\left(2n+2\right)⋮n+1\)
\(\Rightarrow2n+7-2n-2⋮n+1\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{1;5\right\}\Rightarrow n\in\left\{0;4\right\}\)
Vậy \(n\in\left\{0;4\right\}\) thỏa mãn đề bài
c, tương tự phần b
d, Vì : \(4n+3⋮2n+6\)
Mà : \(2n+6⋮2n+6\Rightarrow2\left(2n+6\right)⋮2n+6\Rightarrow4n+12⋮2n+6\)
\(\Rightarrow\left(4n+12\right)-\left(4n+3\right)⋮2n+6\)
\(\Rightarrow4n+12-4n-3⋮2n+6\Rightarrow9⋮2n+6\)
\(\Rightarrow2n+6\in\left\{1;2;9\right\}\Rightarrow2n=3\Rightarrow n\in\varnothing\)
Vậy \(n\in\varnothing\)

Đề sai thì phải ! Học Lớp 7 mới giải xong bài này !
\(\frac{1}{9}\cdot27^n=3^n\)
\(\frac{1}{9}\cdot\left(3^3\right)^n=3^n\)
\(\frac{1}{9}\cdot3^{3n}=3^n\)
\(\frac{1}{9}=3^n\text{ : }3^{3n}\)
\(\frac{1}{9}=3^{-2n}\)
\(\frac{1}{3^2}=\frac{1}{3^{2n}}\)
\(\Rightarrow\text{ }3^{2n}=3^2\)
\(3^{2n}-3^2=0\)
\(3\left(3^{2n-1}-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3=0\text{ ( Vô lí ) }\\3^{2n-1}-3=0\end{cases}}\) \(\Rightarrow\text{ }3^{2n-1}=3\) \(\Rightarrow\text{ }2n-1=1\) \(\Rightarrow\text{ }2n=2\) \(\Rightarrow\text{ }n=1\)
Vậy \(n=1\)

1)\(\left(2\dfrac{3}{17}-2\dfrac{3}{5}\right)+\left(-2\dfrac{3}{17}-1\dfrac{2}{5}\right)\)
=\(\dfrac{37}{17}-\dfrac{13}{5}+\left(-\dfrac{37}{17}\right)-\dfrac{7}{5}\)
=\(\left[\dfrac{37}{17}+\left(-\dfrac{37}{17}\right)\right]-\left(\dfrac{13}{5}+\dfrac{7}{5}\right)\)
=\(0-4=-4\)
2)\(\left(2\dfrac{7}{15}-3\dfrac{3}{7}\right)-\left(-\dfrac{9}{21}+3\dfrac{7}{15}\right)\)
=\(2\dfrac{7}{15}-3\dfrac{3}{7}+\dfrac{9}{21}-3\dfrac{7}{15}\)
=\(\left(2\dfrac{7}{15}-3\dfrac{7}{15}\right)+\left(-3\dfrac{3}{7}+\dfrac{9}{21}\right)\)
=\(-1+\left(-\dfrac{24}{7}+\dfrac{9}{21}\right)\)
=\(\left(-1\right)+\left(-3\right)\)
=-4
3)\(\left(2\dfrac{7}{19}+5\dfrac{3}{7}\right)+\left(-\dfrac{14}{38}+1\dfrac{4}{7}\right)\)
\(=2\dfrac{7}{19}+5\dfrac{3}{7}+\left(-\dfrac{14}{38}\right)+1\dfrac{4}{7}\)
\(=\left(5\dfrac{3}{7}+1\dfrac{4}{7}\right)+\left[2\dfrac{7}{19}+\left(-\dfrac{14}{38}\right)\right]\)
\(=7+\left[\dfrac{45}{19}+\left(-\dfrac{14}{38}\right)\right]\)
\(=7+2=9\)
Hai câu(2),(3)mình làm bằng cách cộng trừ hỗn số cho nhanh nếu bạn không làm cách đó thì đổi ra p/s làm cũng được
1,Do 19\(⋮3-n\) nên \(3-n\in U\left(19\right)\)={-1;1;-19;19}
\(\Leftrightarrow n\in\left\{4;2;22;-16\right\}\)
2,Do \(21⋮1-2n\) nên \(1-2n\in U\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
\(\Leftrightarrow2n\in\left\{22;8;4;2;0;-6;-20\right\}\)\(\Leftrightarrow n\in\left\{11;4;2;1;0;-3;-10\right\}\)
3,Do \(-15⋮3-2n\) nên \(3-2n\in U\left(-15\right)=\left\{-15;-5;-3;-1;1;3;5;15\right\}\)
\(2n\in\left\{18;8;6;4;2;0;-2;-12\right\}\)\(\Leftrightarrow n\in\left\{9;4;3;2;0;-1;-6\right\}\)