K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

=1+2+3+(6+9+...102)

=\(6+\left(6+102\right).\frac{\frac{\left(102-6\right)}{3}}{2}\)

=\(6+108.16\)

=\(6+1728\)

=\(1734\)

11 tháng 9 2019

Bài 1 : \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right]:5\times x< \frac{5}{6}\)

=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right]:5\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{1}{24}+\frac{2}{15}+\frac{3}{40}\right]:5\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \frac{5}{12}:5\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \frac{1}{12}\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \frac{x}{12}< \frac{5}{6}\)

=> \(\frac{8}{12}< \frac{x}{12}< \frac{10}{12}\)

=> x = 9

Bài 2 : \(\frac{\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right]}{x}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)

=> \(\frac{\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}\right]}{x}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{11\cdot12}\)

=> \(\frac{\left[1-\frac{1}{16}\right]}{x}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}\)

=> \(\frac{15}{\frac{16}{x}}=1-\frac{1}{12}\)

=> \(\frac{15}{\frac{16}{x}}=\frac{11}{12}\)

=> \(\frac{15}{16}:x=\frac{11}{12}\)

=> \(x=\frac{45}{44}\)

Bài 3 : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\times(x+1):2}=\frac{399}{400}\)

=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\times(x+1)}=\frac{399}{400}\)

=> \(2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)

=> \(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)

=> \(\left[\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{399}{800}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{399}{800}\)

=> \(\frac{1}{x+1}=\frac{1}{800}\)

=> x = 799

11 tháng 9 2019

Bài 2 :

\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\) (*)

Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=\frac{8+4+2+1}{16}=\frac{15}{16}\) (1)

Lại có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)

\(=1\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)

\(=1-\frac{1}{12}=\frac{11}{12}\) (2)

Thay (1) và (2) vào biểu thức (*) ta được :

\(\frac{15}{16}:x=\frac{11}{12}\)

\(\Leftrightarrow x=\frac{15}{16}:\frac{11}{12}\)

\(\Leftrightarrow x=\frac{45}{44}\)

Vậy : \(x=\frac{45}{44}\)

4 tháng 9 2019

các bn ơi mk cần gấp lắm

bạn ở đâu vậy

24 tháng 3 2021

a) cos199 số

b) có 100 số

24 tháng 3 2021

a) 199 so hang

b) 100 so hang

18 tháng 1 2022

0 nha bạn

18 tháng 1 2022

TL

Bằng 9

HT

Tích Thật Ko?

24 tháng 7 2020

Trả lời:

a, \(A=5\times\left(\frac{1}{5}+\frac{1}{7}\right)-\left(\frac{2}{5}+\frac{2}{17}+\frac{6}{10}+\frac{9}{51}\right)\)

\(A=5\times\left(\frac{1}{5}+\frac{1}{7}\right)-\left(\frac{2}{5}+\frac{2}{17}+\frac{3}{5}+\frac{3}{17}\right)\)

\(A=5\times\left(\frac{1}{5}+\frac{1}{7}\right)-\left(\frac{5}{5}+\frac{5}{17}\right)\)

\(A=5\times\left(\frac{1}{5}+\frac{1}{7}\right)-5\times\left(\frac{1}{5}+\frac{1}{17}\right)\)

\(A=5\times\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{5}-\frac{1}{7}\right)\)

\(A=5\times\left(\frac{1}{7}-\frac{1}{17}\right)\)

\(A=5\times\frac{10}{119}\)

\(A=\frac{50}{119}\)

  b, \(B=\frac{2003\times14+1988+2001\times2002}{2002+2002\times503+504\times2002}\)

\(B=\frac{\left(2002+1\right)\times14+1988+2001\times2002}{2002\times\left(1+503+504\right)}\)

\(B=\frac{2002\times14+14+1988+2001\times2002}{2002\times1008}\)

\(B=\frac{2002\times14+2002+2001\times2002}{2002\times1008}\)

\(B=\frac{2002\times\left(14+1+2001\right)}{2002\times1008}\)

\(B=\frac{2002\times2016}{2002\times1008}\)

\(B=2\)

c, Sửa dề 

\(\left(4,58\div3,27+5,23\div3,27\right)\times4,08-4,08\)

\(=\left[\left(4,58+5,23\right)\div3,27\right]\times4,08-4,08\)

\(=\left(9,81\div3,27\right)\times4,08-4,08\)

\(=3\times4,08-4,08\)

\(=4,08\times\left(3-1\right)\)

\(=4,08\times2\)

\(=8,16\)

d\(\frac{6}{11}+\frac{7}{17}+\frac{8}{25}+\frac{10}{17}+\frac{16}{11}+\frac{17}{25}\)

\(=\left(\frac{6}{11}+\frac{16}{11}\right)+\left(\frac{7}{17}+\frac{10}{17}\right)+\left(\frac{8}{25}+\frac{17}{25}\right)\)

\(=2+1+1\)

\(=4\)