
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét ΔMNP và ΔKPN có
\(\hat{MNP}=\hat{KPN}\) (hai góc so le trong, MN//PK)
NP chung
\(\hat{MPN}=\hat{KNP}\) (hai góc so le trong, MP//NK)
Do đó: ΔMNP=ΔKPN
=>MN=KP; MP=KN
ta có: MP=KN
MP=NQ
Do đó: NK=NQ
=>ΔNKQ cân tại N
b: Ta có: ΔNKQ cân tại N
=>\(\hat{NKQ}=\hat{NQK}\)
mà \(\hat{NKQ}=\hat{MPQ}\) (hai góc đồng vị, MP//NK)
nên \(\hat{MPQ}=\hat{NQP}\)
Xét ΔMQP và ΔNPQ có
MP=NQ
\(\hat{MPQ}=\hat{NQP}\)
PQ chung
Do đó: ΔMQP=ΔNPQ
c: ΔMQP=ΔNPQ
=>\(\hat{MQP}=\hat{NPQ}\)
=>MNPQ là hình thang cân

Ta có: \(5x^2+5y^2+8xy-2x+2y+2=0\)
=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
=>\(4\left(x^2+2xy+y^2\right)+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>\(\begin{cases}x+y=0\\ x-1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=1\\ y=-1\end{cases}\)
Khi x=1;y=-1 thì ta có:
\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}\)
=1

a: ABCD là hình vuông
=>AB=BC=CD=DA và AB//CD và AD//BC
Ta có:AB//CD
=>AB//CE
Xét tứ giác ABEC có
AB//EC
AC//BE
Do đó: ABEC là hình bình hành
=>AC=BE
mà AC=BD(ABCD là hình vuông)
nên BD=BE
=>ΔBDE cân tại B
Ta có: ABCD là hình vuông
=>AC⊥BD
mà AC//BE
nên BD⊥BE tại B
=>\(\hat{DBE}=90^0\)
ABCD là hình vuông
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
=>\(AO=OC=\frac{AC}{2};OB=OD=\frac{BD}{2}\)
mà AC=BD
nên OA=OC=OB=OD=AC/2=BD/2
Ta có: ABEC là hình bình hành
=>AB=EC
mà AB=CD
nên CE=CD
=>C là trung điểm của DE
Xét ΔBDE có
C,F lần lượt là trung điểm của ED,EB
=>CF là đường trung bình của ΔBDE
=>CF//BD và \(CF=\frac{BD}{2}\)
CF//BD
=>CF//BO
Ta có: \(CF=\frac{BD}{2}\)
\(OB=OD=\frac{BD}{2}\)
Do đó: CF=OB=OD
Ta có: \(BO=OD=\frac{BD}{2}\)
\(BF=FE=\frac{BE}{2}\)
mà BD=BE
nên BO=OD=BF=FE
Xét tứ giác BOCF có
CF//BO
CF=BO
Do đó: BOCF là hình bình hành
Hình bình hành BOCF có BO=BF
nên BOCF là hình thoi
Hình thoi BOCF có \(\hat{OBF}=90^0\)
nên BOCF là hình vuông
Xét tứ giác BDKE có
C là trung điểm chung của BK và DE
=>BDKE là hình bình hành
Hình bình hành BDKE có BD=BE
nên BDKE là hình thoi
Hình thoi BDKE có \(\hat{DBE}=90^0\)
nên BDKE là hình vuông
b: ΔBCD vuông tại C
=>\(BC^2+CD^2=BD^2\)
=>\(BD^2=2BC^2\)
=>\(BD=BC\sqrt2\)
=>\(OD=\frac{BC\sqrt2}{2}\)
=>OD<>BC
mà BC=OF
nên OD<>OF
=>OFCD không thể là hình vuông

Bài 1:
a: Ta có: BH⊥AC
CD⊥CA
Do đó: BH//CD
Ta có: CH⊥AB
BD⊥AB
Do đó: CH//BD
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà O là trung điểm của BC
nên O là trung điểm của HD
=>H,O,D thẳng hàng
Bài 2:
a: Ta có: DM là phân giác của góc ADC
=>\(\hat{ADM}=\hat{MDC}\)
mà \(\hat{MDC}=\hat{AMD}\) (hai góc so le trong, AM//DC)
nên \(\hat{ADM}=\hat{AMD}\)
=>ΔADM cân tại A
b: Ta có: \(\hat{ADM}=\hat{CDM}=\frac12\cdot\hat{ADC}\) (DM là phân giác của góc ADC)
\(\hat{ABN}=\hat{CBN}=\frac12\cdot\hat{ABC}\) (BN là phân giác của góc ABC)
mà \(\hat{ADC}=\hat{ABC}\) (ABCD là hình bình hành)
nên \(\hat{ADM}=\hat{CDM}=\hat{ABN}=\hat{CBN}\)
Xét ΔMAD và ΔNCB có
\(\hat{MAD}=\hat{NCB}\)
AD=CB
\(\hat{MDA}=\hat{NBC}\)
Do đó: ΔMAD=ΔNCB
=>AM=CN
Ta có: AM+MB=AB
CN+ND=CD
mà AM=CN và AB=CD
nên MB=ND
Xét tứ giác MBND có
MB//ND
MB=ND
Do đó: MBND là hình bình hành
a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\hat{HBA}\) chung
Do đó: ΔBHA~ΔBAC
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\hat{HAB}=\hat{HCA}\left(=90^0-\hat{HBA}\right)\)
Do đó: ΔHAB~ΔHCA
=>\(\frac{HA}{HC}=\frac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
c: ΔAHB vuông tại H
mà HP là đường trung tuyến
nên HP=PA=PB
PA=PH
=>ΔPAH cân tại P
=>\(\hat{PAH}=\hat{PHA}\left(1\right)\)
Ta có: HM⊥AC
AB⊥CA
Do đó: HM//AB
=>\(\hat{MHA}=\hat{HAP}\) (hai góc so le trong)(2)
Từ (1),(2) suy ra \(\hat{MHA}=\hat{PHA}\)
=>HA là phân giác của góc MHP