K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\hat{HBA}\) chung

Do đó: ΔBHA~ΔBAC

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\hat{HAB}=\hat{HCA}\left(=90^0-\hat{HBA}\right)\)

Do đó: ΔHAB~ΔHCA

=>\(\frac{HA}{HC}=\frac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

c: ΔAHB vuông tại H

mà HP là đường trung tuyến

nên HP=PA=PB

PA=PH

=>ΔPAH cân tại P

=>\(\hat{PAH}=\hat{PHA}\left(1\right)\)

Ta có: HM⊥AC

AB⊥CA

Do đó: HM//AB

=>\(\hat{MHA}=\hat{HAP}\) (hai góc so le trong)(2)

Từ (1),(2) suy ra \(\hat{MHA}=\hat{PHA}\)

=>HA là phân giác của góc MHP

17 tháng 9

cau 1 2 3 4 5


17 tháng 9

giup minh voi


15 tháng 9

12567876

a: Xét ΔMNP và ΔKPN có

\(\hat{MNP}=\hat{KPN}\) (hai góc so le trong, MN//PK)

NP chung

\(\hat{MPN}=\hat{KNP}\) (hai góc so le trong, MP//NK)

Do đó: ΔMNP=ΔKPN

=>MN=KP; MP=KN

ta có: MP=KN

MP=NQ

Do đó: NK=NQ

=>ΔNKQ cân tại N

b: Ta có: ΔNKQ cân tại N

=>\(\hat{NKQ}=\hat{NQK}\)

\(\hat{NKQ}=\hat{MPQ}\) (hai góc đồng vị, MP//NK)

nên \(\hat{MPQ}=\hat{NQP}\)

Xét ΔMQP và ΔNPQ có

MP=NQ

\(\hat{MPQ}=\hat{NQP}\)

PQ chung

Do đó: ΔMQP=ΔNPQ

c: ΔMQP=ΔNPQ

=>\(\hat{MQP}=\hat{NPQ}\)

=>MNPQ là hình thang cân

Ta có: \(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x^2+2xy+y^2\right)+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>\(\begin{cases}x+y=0\\ x-1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=1\\ y=-1\end{cases}\)

Khi x=1;y=-1 thì ta có:

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}\)

=1

a: ABCD là hình vuông

=>AB=BC=CD=DA và AB//CD và AD//BC

Ta có:AB//CD
=>AB//CE

Xét tứ giác ABEC có

AB//EC

AC//BE

Do đó: ABEC là hình bình hành

=>AC=BE

mà AC=BD(ABCD là hình vuông)

nên BD=BE

=>ΔBDE cân tại B

Ta có: ABCD là hình vuông

=>AC⊥BD

mà AC//BE

nên BD⊥BE tại B

=>\(\hat{DBE}=90^0\)

ABCD là hình vuông

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

=>\(AO=OC=\frac{AC}{2};OB=OD=\frac{BD}{2}\)

mà AC=BD

nên OA=OC=OB=OD=AC/2=BD/2

Ta có: ABEC là hình bình hành

=>AB=EC

mà AB=CD

nên CE=CD

=>C là trung điểm của DE

Xét ΔBDE có

C,F lần lượt là trung điểm của ED,EB

=>CF là đường trung bình của ΔBDE

=>CF//BD và \(CF=\frac{BD}{2}\)

CF//BD

=>CF//BO

Ta có: \(CF=\frac{BD}{2}\)

\(OB=OD=\frac{BD}{2}\)

Do đó: CF=OB=OD

Ta có: \(BO=OD=\frac{BD}{2}\)

\(BF=FE=\frac{BE}{2}\)

mà BD=BE

nên BO=OD=BF=FE

Xét tứ giác BOCF có

CF//BO

CF=BO

Do đó: BOCF là hình bình hành

Hình bình hành BOCF có BO=BF

nên BOCF là hình thoi

Hình thoi BOCF có \(\hat{OBF}=90^0\)

nên BOCF là hình vuông

Xét tứ giác BDKE có

C là trung điểm chung của BK và DE

=>BDKE là hình bình hành

Hình bình hành BDKE có BD=BE

nên BDKE là hình thoi

Hình thoi BDKE có \(\hat{DBE}=90^0\)

nên BDKE là hình vuông

b: ΔBCD vuông tại C

=>\(BC^2+CD^2=BD^2\)

=>\(BD^2=2BC^2\)

=>\(BD=BC\sqrt2\)

=>\(OD=\frac{BC\sqrt2}{2}\)

=>OD<>BC

mà BC=OF

nên OD<>OF

=>OFCD không thể là hình vuông

Bài 1:

a: Ta có: BH⊥AC

CD⊥CA

Do đó: BH//CD

Ta có: CH⊥AB

BD⊥AB

Do đó: CH//BD

Xét tứ giác BHCD có

BH//CD
BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

mà O là trung điểm của BC

nên O là trung điểm của HD

=>H,O,D thẳng hàng

Bài 2:

a: Ta có: DM là phân giác của góc ADC

=>\(\hat{ADM}=\hat{MDC}\)

\(\hat{MDC}=\hat{AMD}\) (hai góc so le trong, AM//DC)

nên \(\hat{ADM}=\hat{AMD}\)

=>ΔADM cân tại A

b: Ta có: \(\hat{ADM}=\hat{CDM}=\frac12\cdot\hat{ADC}\) (DM là phân giác của góc ADC)

\(\hat{ABN}=\hat{CBN}=\frac12\cdot\hat{ABC}\) (BN là phân giác của góc ABC)

\(\hat{ADC}=\hat{ABC}\) (ABCD là hình bình hành)

nên \(\hat{ADM}=\hat{CDM}=\hat{ABN}=\hat{CBN}\)

Xét ΔMAD và ΔNCB có

\(\hat{MAD}=\hat{NCB}\)

AD=CB

\(\hat{MDA}=\hat{NBC}\)

Do đó: ΔMAD=ΔNCB

=>AM=CN

Ta có: AM+MB=AB

CN+ND=CD

mà AM=CN và AB=CD

nên MB=ND

Xét tứ giác MBND có

MB//ND

MB=ND

Do đó: MBND là hình bình hành