K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 giờ trước (9:08)

Bài 3:

a: ΔOAB cân tại O

mà OH là đường cao

nên OH là phân giác của góc AOB và H là trung điểm của BC

b: OH là phân giác của góc AOB

=>\(\hat{AOH}=\hat{BOH}=\frac12\cdot\hat{AOB}=60^0\)

Xét ΔOHA vuông tại H có cos HOA\(=\frac{OH}{OA}\)

=>\(\frac{OH}{R}=cos60=\frac12\)

=>\(OH=\frac{R}{2}\)

ΔOHA vuông tại H

=>\(HO^2+HA^2=OA^2\)

=>\(HA^2=R^2-\left(\frac{R}{2}\right)^2=R^2-\frac{R^2}{4}=\frac34R^2\)

=>\(HA=\frac{R\sqrt3}{2}\)

H là trung điểm của AB

=>\(AB=2\cdot AH=2\cdot\frac{R\sqrt3}{2}=R\sqrt3\)

Diện tích tam giác OAB là:

\(S_{OAB}=\frac12\cdot OH\cdot AB=\frac12\cdot R\cdot R\sqrt3=\frac{R^2\sqrt3}{2}\)

c: Xét ΔCOA có OC=OA và \(\hat{AOC}=60^0\)

nên ΔCOA đều

=>CA=AC=OC=R

Xét ΔCOB có OC=OB và \(\hat{BOC}=60^0\)

nên ΔBOC đều

=>BO=OC=BC=R

Xét tứ giác OACB có OA=CA=CB=OB

nên OACB là hình thoi

Bài 2:

a: ΔOAB cân tại O

mà OM là đường trung tuyến

nên OM⊥AB tại M
b: ΔOAB vuông tại O

=>\(OA^2+OB^2=AB^2\)

=>\(AB^2=R^2+R^2=2R^2\)

=>\(AB=R\sqrt2\)

ΔOAB vuông tại O có OM là đường trung tuyến

nên \(OM=\frac{AB}{2}=\frac{R\sqrt2}{2}\)

Bài 1:

a: Xét tứ giác BEDC có \(\hat{BEC}=\hat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp đường tròn đường kính BC

=>B,E,D,C cùng thuộc một đường tròn

b: Xét tứ giác ADHE có \(\hat{ADH}+\hat{AEH}=90^0+90^0=180^0\)

nên ADHE là tứ giác nội tiếp đường tròn đường kính AH

=>A,D,E,H cùng thuộc một đường tròn

c: BEDC là tứ giác nội tiếp đường tròn đường kính BC

=>ED<BC

ADHE nội tiếp đường tròn đường kính AH

=>DE<AH

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)

=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)

=>Hệ vô nghiệm

b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)

=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)

=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)

c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)

=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)

d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)

=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)

=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)

S
9 tháng 9

\(a.\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Leftrightarrow\begin{cases}6x-4y=7\left(1\right)\\ -6x+4y=-9\left(2\right)\end{cases}\)

lấy (1) + (2) ta được:

0x + 0y = -2

vậy phương trình trên vô nghiệm

\(b.\begin{cases}2x-4y=9\\ -3x-6y=-27\end{cases}\Leftrightarrow\begin{cases}6x-12y=27\left(1\right)\\ -6x-12y=-54\left(2\right)\end{cases}\)

lấy (1) - (2) ta được:

12x = 81

⇒ x = 81 : 12 = 6,75

thay x = 6,75 vào (1) ta được:

\(6\cdot6,75-12y=27\)

40,5 - 12y = 27

12y = 40,5 - 27

12y = 13,5

y = 13,5 : 12 = 1,125

kết luận: (x; y) = (6,75; 1,125)

\(c.\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Leftrightarrow\begin{cases}10x+2y=6\left(1\right)\\ 4x-2y=9\left(2\right)\end{cases}\)

lấy (1) + (2) ta được:

14x = 15

x = 15 : 14 = \(\frac{15}{14}\) (3)

thay (3) vào (1) ta được:

\(10\cdot\frac{15}{14}+2y=6\)

\(\frac{75}{7}+2y=6\)

\(2y=6-\frac{75}{7}\)

\(2y=-\frac{33}{7}\)

\(y=-\frac{33}{7}:2=-\frac{33}{7}\cdot\frac12=-\frac{33}{14}\)

kết luận: \(\left(x;y\right)=\left(\frac{15}{14};-\frac{33}{14}\right)\)

\(d.\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Leftrightarrow\begin{cases}4x-6y=-10\left(1\right)\\ -4x+6y=10\left(2\right)\end{cases}\)

lấy (1) + (2) ta được:

0x + 0y = 0

vậy hệ có vô số nghiệm

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)

=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)

=>Hệ vô nghiệm

b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)

=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)

=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)

c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)

=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)

d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)

=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)

=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)

a: Xét tứ giác SAOB có \(\hat{SAO}+\hat{SBO}=90^0+90^0=180^0\)

nên SAOB là tứ giác nội tiếp đường tròn đường kính SO

b: ΔOMN cân tại O

mà OI là đường trung tuyến

nên OI⊥MN tại I

Ta có: \(\hat{OIS}=\hat{OAS}=\hat{OBS}=90^0\)

=>O,I,A,S,B cùng thuộc đường tròn đường kính OS
c: Xét (O) có

SA,SB là các tiếp tuyến

Do đó: SA=SB

=>S nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra SO là đường trung trực của AB

=>SO⊥AB tại H và H là trung điểm của AB

Xét ΔSAO vuông tại A có AH là đường cao

nên \(SH\cdot SO=SA^2\)

d: Xét (O) có

\(\hat{SAM}\) là góc tạo bởi tiếp tuyến AS và dây cung AM

\(\hat{ANM}\) là góc nội tiếp chắn cung AM

Do đó: \(\hat{SAM}=\hat{ANM}\)

Xét ΔSAM và ΔSNA có

\(\hat{SAM}=\hat{SNA}\)

góc ASM chung

Do đó: ΔSAM~ΔSNA

=>\(\frac{SA}{SM}=\frac{SN}{SA}\)

=>\(SA^2=SM\cdot SN\)

14 tháng 9

loading...

a) Do MN ⊥ OA tại H (gt)

⇒ H là trung điểm của MN

Tứ giác OMAN có:

H là trung điểm của OA (gt)

H là trung điểm của MN (cmt)

⇒ OMAN là hình thoi

⇒ OA là tia phân giác của ∠MON (1)

Do BM và BN là hai tiếp tuyến của (O) (gt)

⇒ OB là tia phân giác của ∠MON (2)

Từ (1) và (2) suy ra O, A, B thẳng hàng

b) Do OMAN là hình thoi (cmt)

⇒ AM = OA = OM = R

⇒ ∆OAM là tam giác đều

⇒ ∠MOA = 60⁰

⇒ ∠MOB = 60⁰

Do BM là tiếp tuyến của (O) (gt)

⇒ BM ⊥ OM

⇒ ∆OMB vuông tại M

⇒ ∠OBM + ∠MOB = 90⁰

⇒ ∠OBM = 90⁰ - ∠MOB = 90⁰ - 60⁰ = 30⁰

Do BM và BN là hai tiếp tuyến của (O) (gt)

⇒ BO là tia phân giác của ∠MBN

⇒ ∠MBN = 2.∠OBM = 2.30⁰ = 60⁰

Do BM và BN là hai tiếp tuyến của (O) (gt)

⇒ BM = BN

∆BMN có:

BM = BN (cmt)

⇒ ∆BMN cân tại B

Mà ∠MBN = 60⁰ (cmt)

⇒ ∆BMN là tam giác đều

c) ∆OMB vuông tại M (cmt)

Do MN ⊥ OA tại H (gt)

⇒ MH ⊥ OB

⇒ MH là đường cao của ∆OMB

⇒ OH.OB = OM²

Hay OH.OB = R²

d) ∆OMB vuông tại B (cmt)

loading...

⇒ BM = OM.tanMOB

= R.tan30⁰

loading...

a: Xét (O) có

BD,BA là các tiếp tuyến

Do đó: BD=BA

=>B nằm trên đường trung trực của AD(1)

Ta có: OD=OA

=>O nằm trên đường trung trực của AD(2)

Từ (1),(2) suy ra OB là đường trung trực của AD

=>OB⊥AD
Xét (O) có

CA,CE là các tiếp tuyến

Do đó: CA=CE
=>C nằm trên đường trung trực của AE(3)

Ta có: OA=OE

=>O nằm trên đường trung trực của AE(4)

Từ (3),(4) suy ra OC là đường trung trực của AE
=>OC⊥AE
b: BD+CE

=BA+AC

=BC


S
12 tháng 9

bài 4: gọi x; y (km/h) lần lượt là vận tốc ban đầu của xe đi từ A và xe đi từ B (x, y >0)

*trường hợp 1:

Quãng đường xe đi từ A đến lúc gặp: 7,5x (km)

quãng đường xe đi từ B đến lúc gặp: 7,5y(km)

vì 2 xe đi ngược chiều và gặp nhau sau 7g30p nên ta có:

\(\left(x+Y\right)\cdot7,5=525\Rightarrow x+y=70\left(1\right)\)

*trường hợp 2

Vận tốc của xe A khi tăng gấp đôi ngay từ đầu là: 2x (km/h)

Quãng đường xe đi từ A đến lúc gặp: \(2x\cdot5,25\left(\operatorname{km}\right)\)

quãng đường xe đi từ B đến lúc gặp: 5,25y (km)

vì 2 xe gặp nhau sau 5 giờ 15 phút nên ta có:

\(\left(2x+y\right)\cdot5,25=525\Rightarrow2x+y=100\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình:

\(\begin{cases}x+y=70\\ 2x+y=100\end{cases}\Rightarrow\begin{cases}x=30\\ y=40\end{cases}\left(TM\right)\)

vậy vận tốc ban đầu của xe đi từ A và xe đi từ B lần lượt là 30km/h và 40km/h

S
12 tháng 9

bài 5: gọi x, y, z (m vuông) lần lượt là diện tích lô 1, lô 2 và lô 3 (x,y,z > 0)

lô 1 gấp 3/2 lần tổng diện tích 2 lô còn lại nên:

\(x=\frac32\cdot\left(y+z\right)\)

lô 3 lớn hơn lô 2 200m² nên ta có:

\(y+200=z\)

mà khu đất đó có diện tích là 2000m² nên:

\(\frac32\cdot\left(y+z\right)+y+z=2000\)

\(\Rightarrow\frac52\cdot\left(y+z\right)=2000\)

\(\Rightarrow y+z=800\)

Mà z = y + 200 nên

\(y+y+200=800\Rightarrow2y=600\Rightarrow y=300\) (TM)

⇒ z = 300 + 200 = 500 (TM)

⇒ x = \(\frac32\cdot\left(500+300\right)=1200\) (TM)

Vậy diện tích lô 1, lô 2, lô 3 lần lượt là 1200m², 300m², 500m²