K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 giờ trước (8:05)

Bài 2

loading...

∆ADE có:

AD = AE (gt)

⇒ ∆ADE cân tại A

⇒ ∠ADE = (180⁰ - ∠DAE) : 2 = (180⁰ - ∠BAC) : 2 (1)

∆ABC cân tại A (gt)

⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (2)

Từ (1) và (2) suy ra ∠ADE = ∠ABC

Mà ∠ADE và ∠ABC là hai góc đồng vị

⇒ DE // BC

∆ABC cân tại A (gt)

⇒ ∠ABC = ∠ACB

⇒ ∠DBC = ∠ECB

Tứ giác BDEC có:

DE // BC (cmt)

⇒ BDEC là hình thang

Mà ∠DBC = ∠ECB (cmt)

⇒ BDEC là hình thang cân

22 giờ trước (8:04)

Bài 3

loading...

a) ABC cân tại A (gt)

AB = AC và ABC = ACB

Xét hai tam giác vuông: ABD và ACE có:

AB = AC (cmt)

A chung

ABD = ACE (cạnh huyền - góc nhọn)

AD = AE

b) ∆ADE có:

AD = AE (gt)

⇒ ∆ADE cân tại A

⇒ ∠AED = (180⁰ - ∠EAD) : 2 = (180⁰ - ∠BAC) : 2 (1)

∆ABC cân tại A (gt)

⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (2)

Từ (1) và (2) suy ra ∠AED = ∠ABC

Mà ∠AED và ∠ABC là hai góc đồng vị

⇒ DE // BC

∆ABC cân tại A (gt)

⇒ ∠ABC = ∠ACB

⇒ ∠EBC = ∠DCB

Tứ giác BEDC có:

DE // BC (cmt)

⇒ BEDC là hình thang

Mà ∠EBC = ∠DCB (cmt)

⇒ BEDC là hình thang cân

17 tháng 9

cau 1 2 3 4 5


17 tháng 9

giup minh voi


15 tháng 9

12567876

a: Xét ΔMNP và ΔKPN có

\(\hat{MNP}=\hat{KPN}\) (hai góc so le trong, MN//PK)

NP chung

\(\hat{MPN}=\hat{KNP}\) (hai góc so le trong, MP//NK)

Do đó: ΔMNP=ΔKPN

=>MN=KP; MP=KN

ta có: MP=KN

MP=NQ

Do đó: NK=NQ

=>ΔNKQ cân tại N

b: Ta có: ΔNKQ cân tại N

=>\(\hat{NKQ}=\hat{NQK}\)

\(\hat{NKQ}=\hat{MPQ}\) (hai góc đồng vị, MP//NK)

nên \(\hat{MPQ}=\hat{NQP}\)

Xét ΔMQP và ΔNPQ có

MP=NQ

\(\hat{MPQ}=\hat{NQP}\)

PQ chung

Do đó: ΔMQP=ΔNPQ

c: ΔMQP=ΔNPQ

=>\(\hat{MQP}=\hat{NPQ}\)

=>MNPQ là hình thang cân

NV
3 tháng 9

Bằng hình vẽ này thì câu hỏi ko trả lời được đâu em.

Hai tam giác vẽ chẳng chính xác gì hết, giao điểm cũng ko rõ ràng vị trí.

không giải được á


a: Xét tứ giác AIBG có

AI//BG

AG//BI

Do đó: AIBG là hình bình hành

=>BG=AI