K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9

Bài 4:

\(\frac{2^8.9^5}{6^9}\)

= \(\frac{2^8.\left(3^2\right)^5}{\left(2.3\right)^9}\)

= \(\frac{2^8.3^{10}}{2^9.3^9}\)

= \(\frac32\)

17 tháng 9

Câu 6:

\(\frac{6^{25}}{4^{12}\times9^{13}}\)

= \(\frac{\left(2.3\right)^{25}}{\left(2^2\right)^{12}.\left(3^2\right)^{13}}\)

= \(\frac{2^{25}\times3^{25}}{2^{24}\times3^{26}}\)

= \(\frac23\)

17 tháng 9

Giải:

Góc xMN = góc MNt = 70\(^0\) (hai góc so le trong)

Suy ra: xy // zt

Góc xMN = Góc mMy = 70\(^0\) (đối đỉnh)

Góc MNt = góc zNn = 70\(^0\) hai góc đối đỉnh

\(\hat{xMN}\) + \(\hat{xMm}\) = 180\(^0\) (hai góc kề bù)

\(\hat{xMm}\) = 180\(^0-70^0=110^0\)

\(\hat{xMm}=\hat{NMy}\) = 110\(^0\) (đối đỉnh)

Góc NMy = góc MNz = 110\(^0\) (so le trong)

Góc MNz = Góc nNt = 110\(^0\) (đối đỉnh)



Ta có: \(\hat{xMN}=\hat{tNM}\left(=70^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên xy//zt

=>\(\hat{yMN}=\hat{zNM}\) (hai góc so le trong)

Ta có: xy//zt

=>\(\hat{xMN}+\hat{zNM}=180^0\) (hai góc trong cùng phía)

=>\(\hat{zNM}=180^0-70^0=110^0\)

Ta có: \(\hat{zNM}=\hat{yMN}\) (cmt)

\(\hat{zNM}=110^0\)

nên \(\hat{yMN}=110^0\)

Các cặp góc đồng vị là: \(\hat{yMm};\hat{tNM}\) ; \(\hat{xMm};\hat{zNM}\) ; \(\hat{xMN};\hat{zNn}\) ; \(\hat{yMN};\hat{tNn}\)

Ta có: \(\hat{xMN}=\hat{mMy}\) (hai góc đối đỉnh)

\(\hat{xMN}=70^0\)

nên \(\hat{mMy}=70^0\)

Ta có: \(\hat{yMN}=\hat{xMm}\) (hai góc đối đỉnh)

\(\hat{yMN}=110^0\)

nên \(\hat{xMm}=110^0\)

Ta có: \(\hat{MNt}=\hat{zNn}\) (hai góc đối đỉnh)

\(\hat{MNt}=70^0\)

nên \(\hat{zNn}=70^0\)

Ta có: \(\hat{zNM}=\hat{tNn}\) (hai góc đối đỉnh)

\(\hat{zNM}=110^0\)

nên \(\hat{tNn}=110^0\)

sai câu 6 nha bn trắc nghiệm á :(An) house … ❌ → phải là A. house nhưng sửa lại thành “A house has many big windows.” mới chuẩn. ok sông rroif đó còn lại đúng hết 😅


a:Vẽ lại hình:

ta có: a⊥x

b⊥x

Do đó: a//b

b: Ta có: a//b

=>\(\hat{A_1}+\hat{B_4}=180^0\) (hai góc trong cùng phía)

=>\(\hat{B_4}=180^0-70^0=110^0\)

ta có: \(\hat{B_4}=\hat{B_2}\) (hai góc đối đỉnh)

\(\hat{B_4}=110^0\)

nên \(\hat{B_2}=110^0\)