
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét tứ giác SAOB có \(\hat{SAO}+\hat{SBO}=90^0+90^0=180^0\)
nên SAOB là tứ giác nội tiếp đường tròn đường kính SO
b: ΔOMN cân tại O
mà OI là đường trung tuyến
nên OI⊥MN tại I
Ta có: \(\hat{OIS}=\hat{OAS}=\hat{OBS}=90^0\)
=>O,I,A,S,B cùng thuộc đường tròn đường kính OS
c: Xét (O) có
SA,SB là các tiếp tuyến
Do đó: SA=SB
=>S nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra SO là đường trung trực của AB
=>SO⊥AB tại H và H là trung điểm của AB
Xét ΔSAO vuông tại A có AH là đường cao
nên \(SH\cdot SO=SA^2\)
d: Xét (O) có
\(\hat{SAM}\) là góc tạo bởi tiếp tuyến AS và dây cung AM
\(\hat{ANM}\) là góc nội tiếp chắn cung AM
Do đó: \(\hat{SAM}=\hat{ANM}\)
Xét ΔSAM và ΔSNA có
\(\hat{SAM}=\hat{SNA}\)
góc ASM chung
Do đó: ΔSAM~ΔSNA
=>\(\frac{SA}{SM}=\frac{SN}{SA}\)
=>\(SA^2=SM\cdot SN\)

Gọi (d): y=ax+b(a<>0) là phương trình đường thẳng AB
Thay x=3 và y=4 vào y=ax+b, ta được:
\(a\cdot3+b=4\)
=>3a+b=4(1)
Thay x=5 và y=2 vào y=ax+b, ta được:
\(a\cdot5+b=2\)
=>5a+b=2(2)
Từ (1),(2) ta có hệ phương trình: \(\begin{cases}3a+b=4\\ 5a+b=2\end{cases}\Rightarrow\begin{cases}3a+b-5a-b=4-2=2\\ 3a+b=4\end{cases}\)
=>\(\begin{cases}-2a=2\\ 3a+b=4\end{cases}\Rightarrow\begin{cases}a=-1\\ b=4-3a=4-3\cdot\left(-1\right)=7\end{cases}\)
Vậy: AB: y=-x+7

giao điểm của d1 và d2 là nghiệm của phương trình:
\(\begin{cases}5x-17y=8\\ 15x+7y=82\end{cases}\Rightarrow\begin{cases}x=5\\ y=1\end{cases}\)
⇒ A (5; 1)
để 3 đường thẳng này đồng quy thì d3 đi qua A (5;1)
ta có: \(\left(2m-1\right)x-2my=m+2\)
\(\left(2m-1\right)\cdot5-2m\cdot1=m+2\)
10m - 5 - 2m = m + 2
10m - 2m - m = 5 + 2
7m = 7
⇒ m = 1
vậy m = 1 thì 3 đường thẳng này đồng quy

Câu 12: Để hệ vô nghiệm thì \(\frac{m^2}{3}=\frac31<>\frac{m}{1}\)
=>\(\begin{cases}m^2=9\\ m<>3\end{cases}\Rightarrow m=-3\)
Câu 11: x+2y=1
=>x=1-2y=1+1=2
\(\frac12\cdot x_0^2-2\cdot y_0=\frac12\cdot2^2-2\cdot\frac12=2-1=1\)
Câu 10: \(\begin{cases}x+2y=5\\ x-y=-1\end{cases}\Rightarrow\begin{cases}x+2y-x+y=5+1=6\\ x+2y=5\end{cases}\)
=>\(\begin{cases}3y=6\\ x=5-2y\end{cases}\Rightarrow\begin{cases}y=2\\ x=5-2\cdot2=1\end{cases}\)
\(3\cdot x_0^{2020}+2\cdot y_0\)
\(=3\cdot1^{2020}+2\cdot2=3+4=7\)
Câu 9: Để hệ phương trình \(\begin{cases}m^2x+y=3m\\ -4x-y=6\end{cases}\) vô nghiệm thì
\(\frac{m^2}{-4}=\frac{1}{-1}<>\frac{3m}{6}\)
=>\(\begin{cases}m^2=4\\ 3m<>-6\end{cases}\Rightarrow\begin{cases}m\in\left\lbrace2;-2\right\rbrace\\ m<>-2\end{cases}\)
=>m=2
Để hệ phương trình \(\begin{cases}\left(2-a\right)x-y=-2\\ ax-y=6\end{cases}\) vô nghiệm thì \(\frac{2-a}{a}=\frac{-1}{-1}<>-\frac26\)
=>\(\frac{2-a}{a}=1\)
=>2-a=a
=>a=1

Bài 3:
a: ΔOAB cân tại O
mà OH là đường cao
nên OH là phân giác của góc AOB và H là trung điểm của BC
b: OH là phân giác của góc AOB
=>\(\hat{AOH}=\hat{BOH}=\frac12\cdot\hat{AOB}=60^0\)
Xét ΔOHA vuông tại H có cos HOA\(=\frac{OH}{OA}\)
=>\(\frac{OH}{R}=cos60=\frac12\)
=>\(OH=\frac{R}{2}\)
ΔOHA vuông tại H
=>\(HO^2+HA^2=OA^2\)
=>\(HA^2=R^2-\left(\frac{R}{2}\right)^2=R^2-\frac{R^2}{4}=\frac34R^2\)
=>\(HA=\frac{R\sqrt3}{2}\)
H là trung điểm của AB
=>\(AB=2\cdot AH=2\cdot\frac{R\sqrt3}{2}=R\sqrt3\)
Diện tích tam giác OAB là:
\(S_{OAB}=\frac12\cdot OH\cdot AB=\frac12\cdot R\cdot R\sqrt3=\frac{R^2\sqrt3}{2}\)
c: Xét ΔCOA có OC=OA và \(\hat{AOC}=60^0\)
nên ΔCOA đều
=>CA=AC=OC=R
Xét ΔCOB có OC=OB và \(\hat{BOC}=60^0\)
nên ΔBOC đều
=>BO=OC=BC=R
Xét tứ giác OACB có OA=CA=CB=OB
nên OACB là hình thoi
Bài 2:
a: ΔOAB cân tại O
mà OM là đường trung tuyến
nên OM⊥AB tại M
b: ΔOAB vuông tại O
=>\(OA^2+OB^2=AB^2\)
=>\(AB^2=R^2+R^2=2R^2\)
=>\(AB=R\sqrt2\)
ΔOAB vuông tại O có OM là đường trung tuyến
nên \(OM=\frac{AB}{2}=\frac{R\sqrt2}{2}\)
Bài 1:
a: Xét tứ giác BEDC có \(\hat{BEC}=\hat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp đường tròn đường kính BC
=>B,E,D,C cùng thuộc một đường tròn
b: Xét tứ giác ADHE có \(\hat{ADH}+\hat{AEH}=90^0+90^0=180^0\)
nên ADHE là tứ giác nội tiếp đường tròn đường kính AH
=>A,D,E,H cùng thuộc một đường tròn
c: BEDC là tứ giác nội tiếp đường tròn đường kính BC
=>ED<BC
ADHE nội tiếp đường tròn đường kính AH
=>DE<AH

Ta có: \(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
Ta có: \(P=\left(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\right):\frac{4x}{\left(x-1\right)^2}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\cdot\frac{\left(x-1\right)^2}{4x}\)
\(=\frac{1}{2\sqrt{x}}\cdot\left(\sqrt{x}-1\right)^2\cdot\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

Olm chào em, với câu hỏi này em cần đăng kèm cả hình, có như vậy, thầy cô mới có thể hỗ trợ em được tốt nhất, em nhé.
Gọi (d): y = ax + b (a ≠ 0) là phương trình đường thẳng AB
Do (d) đi qua A nên thay tọa độ điểm A(3; 4) vào (d) ta được:
3a + b = 4
b = 4 - 3a (1)
Do (d) đi qua điểm B nên thay tọa độ điểm B(5; 2) vào (d) ta được:
5a + b = 2 (2)
Thế (1) vào (2) ta được:
5a + 4 - 3a = 2
2a = 2 - 4
2a = -2
a = -2 : 2
a = -1
Thế a = -1 vào (1) ta được:
b = 4 - 3.(-1) = 7
Vậy phương trình đường thẳng AB là:
(d): y = -x + 7