
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)
=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)
=>Hệ vô nghiệm
b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)
=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)
=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)
c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)
=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)
d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)
=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)
=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)
\(a.\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Leftrightarrow\begin{cases}6x-4y=7\left(1\right)\\ -6x+4y=-9\left(2\right)\end{cases}\)
lấy (1) + (2) ta được:
0x + 0y = -2
vậy phương trình trên vô nghiệm
\(b.\begin{cases}2x-4y=9\\ -3x-6y=-27\end{cases}\Leftrightarrow\begin{cases}6x-12y=27\left(1\right)\\ -6x-12y=-54\left(2\right)\end{cases}\)
lấy (1) - (2) ta được:
12x = 81
⇒ x = 81 : 12 = 6,75
thay x = 6,75 vào (1) ta được:
\(6\cdot6,75-12y=27\)
40,5 - 12y = 27
12y = 40,5 - 27
12y = 13,5
y = 13,5 : 12 = 1,125
kết luận: (x; y) = (6,75; 1,125)
\(c.\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Leftrightarrow\begin{cases}10x+2y=6\left(1\right)\\ 4x-2y=9\left(2\right)\end{cases}\)
lấy (1) + (2) ta được:
14x = 15
x = 15 : 14 = \(\frac{15}{14}\) (3)
thay (3) vào (1) ta được:
\(10\cdot\frac{15}{14}+2y=6\)
\(\frac{75}{7}+2y=6\)
\(2y=6-\frac{75}{7}\)
\(2y=-\frac{33}{7}\)
\(y=-\frac{33}{7}:2=-\frac{33}{7}\cdot\frac12=-\frac{33}{14}\)
kết luận: \(\left(x;y\right)=\left(\frac{15}{14};-\frac{33}{14}\right)\)
\(d.\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Leftrightarrow\begin{cases}4x-6y=-10\left(1\right)\\ -4x+6y=10\left(2\right)\end{cases}\)
lấy (1) + (2) ta được:
0x + 0y = 0
vậy hệ có vô số nghiệm

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)
=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)
=>Hệ vô nghiệm
b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)
=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)
=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)
c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)
=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)
d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)
=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)
=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)

Bài 3:
a: ΔOBC cân tại O
mà OI là đường cao
nên I là trung điểm của BC
Xét ΔBOD có
BI là đường cao
BI là đường trung tuyến
Do đó: ΔBOD cân tại B
=>BO=BD
ma BO=OD
nên BO=BD=OD
=>ΔBOD đều
=>\(\hat{BOD}=\hat{BDO}=\hat{OBD}=60^0\)
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>\(\hat{BAD}+\hat{BDA}=90^0\)
=>\(\hat{BAD}=90^0-60^0=30^0\)
Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AI chung
IB=IC
Do đó: ΔAIB=ΔAIC
=>AB=AC
ΔAIB=ΔAIC
=>\(\hat{IAB}=\hat{IAC}\)
=>AI là phân giác của góc BAC
=>\(\hat{BAC}=2\cdot\hat{BAD}=2\cdot30^0=60^0\)
Xét ΔABC có AB=AC và \(\hat{BAC}=60^0\)
nên ΔABC đều
b: ΔOBD đều
=>BD=OB=R
ΔABD vuông tại B
=>\(BA^2+BD^2=AD^2\)
=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(BA=R\sqrt3\)
=>\(BA=AC=BC=R\sqrt3\)

a) Do MN ⊥ OA tại H (gt)
⇒ H là trung điểm của MN
Tứ giác OMAN có:
H là trung điểm của OA (gt)
H là trung điểm của MN (cmt)
⇒ OMAN là hình thoi
⇒ OA là tia phân giác của ∠MON (1)
Do BM và BN là hai tiếp tuyến của (O) (gt)
⇒ OB là tia phân giác của ∠MON (2)
Từ (1) và (2) suy ra O, A, B thẳng hàng
b) Do OMAN là hình thoi (cmt)
⇒ AM = OA = OM = R
⇒ ∆OAM là tam giác đều
⇒ ∠MOA = 60⁰
⇒ ∠MOB = 60⁰
Do BM là tiếp tuyến của (O) (gt)
⇒ BM ⊥ OM
⇒ ∆OMB vuông tại M
⇒ ∠OBM + ∠MOB = 90⁰
⇒ ∠OBM = 90⁰ - ∠MOB = 90⁰ - 60⁰ = 30⁰
Do BM và BN là hai tiếp tuyến của (O) (gt)
⇒ BO là tia phân giác của ∠MBN
⇒ ∠MBN = 2.∠OBM = 2.30⁰ = 60⁰
Do BM và BN là hai tiếp tuyến của (O) (gt)
⇒ BM = BN
∆BMN có:
BM = BN (cmt)
⇒ ∆BMN cân tại B
Mà ∠MBN = 60⁰ (cmt)
⇒ ∆BMN là tam giác đều
c) ∆OMB vuông tại M (cmt)
Do MN ⊥ OA tại H (gt)
⇒ MH ⊥ OB
⇒ MH là đường cao của ∆OMB
⇒ OH.OB = OM²
Hay OH.OB = R²
d) ∆OMB vuông tại B (cmt)
⇒ BM = OM.tanMOB
= R.tan30⁰