K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)

=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)

=>Hệ vô nghiệm

b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)

=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)

=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)

c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)

=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)

d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)

=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)

=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)

S
9 tháng 9

\(a.\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Leftrightarrow\begin{cases}6x-4y=7\left(1\right)\\ -6x+4y=-9\left(2\right)\end{cases}\)

lấy (1) + (2) ta được:

0x + 0y = -2

vậy phương trình trên vô nghiệm

\(b.\begin{cases}2x-4y=9\\ -3x-6y=-27\end{cases}\Leftrightarrow\begin{cases}6x-12y=27\left(1\right)\\ -6x-12y=-54\left(2\right)\end{cases}\)

lấy (1) - (2) ta được:

12x = 81

⇒ x = 81 : 12 = 6,75

thay x = 6,75 vào (1) ta được:

\(6\cdot6,75-12y=27\)

40,5 - 12y = 27

12y = 40,5 - 27

12y = 13,5

y = 13,5 : 12 = 1,125

kết luận: (x; y) = (6,75; 1,125)

\(c.\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Leftrightarrow\begin{cases}10x+2y=6\left(1\right)\\ 4x-2y=9\left(2\right)\end{cases}\)

lấy (1) + (2) ta được:

14x = 15

x = 15 : 14 = \(\frac{15}{14}\) (3)

thay (3) vào (1) ta được:

\(10\cdot\frac{15}{14}+2y=6\)

\(\frac{75}{7}+2y=6\)

\(2y=6-\frac{75}{7}\)

\(2y=-\frac{33}{7}\)

\(y=-\frac{33}{7}:2=-\frac{33}{7}\cdot\frac12=-\frac{33}{14}\)

kết luận: \(\left(x;y\right)=\left(\frac{15}{14};-\frac{33}{14}\right)\)

\(d.\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Leftrightarrow\begin{cases}4x-6y=-10\left(1\right)\\ -4x+6y=10\left(2\right)\end{cases}\)

lấy (1) + (2) ta được:

0x + 0y = 0

vậy hệ có vô số nghiệm

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)

=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)

=>Hệ vô nghiệm

b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)

=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)

=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)

c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)

=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)

d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)

=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)

=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)

1 tháng 9

Bạn chụp thẳng chút nhé. Mình không nhìn được

Bài 3:

a: ΔOBC cân tại O

mà OI là đường cao

nên I là trung điểm của BC

Xét ΔBOD có

BI là đường cao

BI là đường trung tuyến

Do đó: ΔBOD cân tại B

=>BO=BD

ma BO=OD

nên BO=BD=OD

=>ΔBOD đều

=>\(\hat{BOD}=\hat{BDO}=\hat{OBD}=60^0\)

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>\(\hat{BAD}+\hat{BDA}=90^0\)

=>\(\hat{BAD}=90^0-60^0=30^0\)

Xét ΔAIB vuông tại I và ΔAIC vuông tại I có

AI chung

IB=IC

Do đó: ΔAIB=ΔAIC

=>AB=AC

ΔAIB=ΔAIC

=>\(\hat{IAB}=\hat{IAC}\)

=>AI là phân giác của góc BAC

=>\(\hat{BAC}=2\cdot\hat{BAD}=2\cdot30^0=60^0\)

Xét ΔABC có AB=AC và \(\hat{BAC}=60^0\)

nên ΔABC đều

b: ΔOBD đều

=>BD=OB=R

ΔABD vuông tại B

=>\(BA^2+BD^2=AD^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt3\)

=>\(BA=AC=BC=R\sqrt3\)


QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

14 tháng 9

loading...

a) Do MN ⊥ OA tại H (gt)

⇒ H là trung điểm của MN

Tứ giác OMAN có:

H là trung điểm của OA (gt)

H là trung điểm của MN (cmt)

⇒ OMAN là hình thoi

⇒ OA là tia phân giác của ∠MON (1)

Do BM và BN là hai tiếp tuyến của (O) (gt)

⇒ OB là tia phân giác của ∠MON (2)

Từ (1) và (2) suy ra O, A, B thẳng hàng

b) Do OMAN là hình thoi (cmt)

⇒ AM = OA = OM = R

⇒ ∆OAM là tam giác đều

⇒ ∠MOA = 60⁰

⇒ ∠MOB = 60⁰

Do BM là tiếp tuyến của (O) (gt)

⇒ BM ⊥ OM

⇒ ∆OMB vuông tại M

⇒ ∠OBM + ∠MOB = 90⁰

⇒ ∠OBM = 90⁰ - ∠MOB = 90⁰ - 60⁰ = 30⁰

Do BM và BN là hai tiếp tuyến của (O) (gt)

⇒ BO là tia phân giác của ∠MBN

⇒ ∠MBN = 2.∠OBM = 2.30⁰ = 60⁰

Do BM và BN là hai tiếp tuyến của (O) (gt)

⇒ BM = BN

∆BMN có:

BM = BN (cmt)

⇒ ∆BMN cân tại B

Mà ∠MBN = 60⁰ (cmt)

⇒ ∆BMN là tam giác đều

c) ∆OMB vuông tại M (cmt)

Do MN ⊥ OA tại H (gt)

⇒ MH ⊥ OB

⇒ MH là đường cao của ∆OMB

⇒ OH.OB = OM²

Hay OH.OB = R²

d) ∆OMB vuông tại B (cmt)

loading...

⇒ BM = OM.tanMOB

= R.tan30⁰

loading...