
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Do MN ⊥ OA tại H (gt)
⇒ H là trung điểm của MN
Tứ giác OMAN có:
H là trung điểm của OA (gt)
H là trung điểm của MN (cmt)
⇒ OMAN là hình thoi
⇒ OA là tia phân giác của ∠MON (1)
Do BM và BN là hai tiếp tuyến của (O) (gt)
⇒ OB là tia phân giác của ∠MON (2)
Từ (1) và (2) suy ra O, A, B thẳng hàng
b) Do OMAN là hình thoi (cmt)
⇒ AM = OA = OM = R
⇒ ∆OAM là tam giác đều
⇒ ∠MOA = 60⁰
⇒ ∠MOB = 60⁰
Do BM là tiếp tuyến của (O) (gt)
⇒ BM ⊥ OM
⇒ ∆OMB vuông tại M
⇒ ∠OBM + ∠MOB = 90⁰
⇒ ∠OBM = 90⁰ - ∠MOB = 90⁰ - 60⁰ = 30⁰
Do BM và BN là hai tiếp tuyến của (O) (gt)
⇒ BO là tia phân giác của ∠MBN
⇒ ∠MBN = 2.∠OBM = 2.30⁰ = 60⁰
Do BM và BN là hai tiếp tuyến của (O) (gt)
⇒ BM = BN
∆BMN có:
BM = BN (cmt)
⇒ ∆BMN cân tại B
Mà ∠MBN = 60⁰ (cmt)
⇒ ∆BMN là tam giác đều
c) ∆OMB vuông tại M (cmt)
Do MN ⊥ OA tại H (gt)
⇒ MH ⊥ OB
⇒ MH là đường cao của ∆OMB
⇒ OH.OB = OM²
Hay OH.OB = R²
d) ∆OMB vuông tại B (cmt)
⇒ BM = OM.tanMOB
= R.tan30⁰

Ta có: \(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
Ta có: \(P=\left(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\right):\frac{4x}{\left(x-1\right)^2}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\cdot\frac{\left(x-1\right)^2}{4x}\)
\(=\frac{1}{2\sqrt{x}}\cdot\left(\sqrt{x}-1\right)^2\cdot\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)
=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)
=>Hệ vô nghiệm
b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)
=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)
=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)
c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)
=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)
d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)
=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)
=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)
\(a.\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Leftrightarrow\begin{cases}6x-4y=7\left(1\right)\\ -6x+4y=-9\left(2\right)\end{cases}\)
lấy (1) + (2) ta được:
0x + 0y = -2
vậy phương trình trên vô nghiệm
\(b.\begin{cases}2x-4y=9\\ -3x-6y=-27\end{cases}\Leftrightarrow\begin{cases}6x-12y=27\left(1\right)\\ -6x-12y=-54\left(2\right)\end{cases}\)
lấy (1) - (2) ta được:
12x = 81
⇒ x = 81 : 12 = 6,75
thay x = 6,75 vào (1) ta được:
\(6\cdot6,75-12y=27\)
40,5 - 12y = 27
12y = 40,5 - 27
12y = 13,5
y = 13,5 : 12 = 1,125
kết luận: (x; y) = (6,75; 1,125)
\(c.\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Leftrightarrow\begin{cases}10x+2y=6\left(1\right)\\ 4x-2y=9\left(2\right)\end{cases}\)
lấy (1) + (2) ta được:
14x = 15
x = 15 : 14 = \(\frac{15}{14}\) (3)
thay (3) vào (1) ta được:
\(10\cdot\frac{15}{14}+2y=6\)
\(\frac{75}{7}+2y=6\)
\(2y=6-\frac{75}{7}\)
\(2y=-\frac{33}{7}\)
\(y=-\frac{33}{7}:2=-\frac{33}{7}\cdot\frac12=-\frac{33}{14}\)
kết luận: \(\left(x;y\right)=\left(\frac{15}{14};-\frac{33}{14}\right)\)
\(d.\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Leftrightarrow\begin{cases}4x-6y=-10\left(1\right)\\ -4x+6y=10\left(2\right)\end{cases}\)
lấy (1) + (2) ta được:
0x + 0y = 0
vậy hệ có vô số nghiệm

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)
=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)
=>Hệ vô nghiệm
b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)
=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)
=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)
c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)
=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)
d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)
=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)
=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)

bài 4: gọi x; y (km/h) lần lượt là vận tốc ban đầu của xe đi từ A và xe đi từ B (x, y >0)
*trường hợp 1:
Quãng đường xe đi từ A đến lúc gặp: 7,5x (km)
quãng đường xe đi từ B đến lúc gặp: 7,5y(km)
vì 2 xe đi ngược chiều và gặp nhau sau 7g30p nên ta có:
\(\left(x+Y\right)\cdot7,5=525\Rightarrow x+y=70\left(1\right)\)
*trường hợp 2
Vận tốc của xe A khi tăng gấp đôi ngay từ đầu là: 2x (km/h)
Quãng đường xe đi từ A đến lúc gặp: \(2x\cdot5,25\left(\operatorname{km}\right)\)
quãng đường xe đi từ B đến lúc gặp: 5,25y (km)
vì 2 xe gặp nhau sau 5 giờ 15 phút nên ta có:
\(\left(2x+y\right)\cdot5,25=525\Rightarrow2x+y=100\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\begin{cases}x+y=70\\ 2x+y=100\end{cases}\Rightarrow\begin{cases}x=30\\ y=40\end{cases}\left(TM\right)\)
vậy vận tốc ban đầu của xe đi từ A và xe đi từ B lần lượt là 30km/h và 40km/h
bài 5: gọi x, y, z (m vuông) lần lượt là diện tích lô 1, lô 2 và lô 3 (x,y,z > 0)
lô 1 gấp 3/2 lần tổng diện tích 2 lô còn lại nên:
\(x=\frac32\cdot\left(y+z\right)\)
lô 3 lớn hơn lô 2 200m² nên ta có:
\(y+200=z\)
mà khu đất đó có diện tích là 2000m² nên:
\(\frac32\cdot\left(y+z\right)+y+z=2000\)
\(\Rightarrow\frac52\cdot\left(y+z\right)=2000\)
\(\Rightarrow y+z=800\)
Mà z = y + 200 nên
\(y+y+200=800\Rightarrow2y=600\Rightarrow y=300\) (TM)
⇒ z = 300 + 200 = 500 (TM)
⇒ x = \(\frac32\cdot\left(500+300\right)=1200\) (TM)
Vậy diện tích lô 1, lô 2, lô 3 lần lượt là 1200m², 300m², 500m²

Bước 1: Viết lại phương trình cho rõ hơn
Ta có:
\(5 \times 2^{y} = 2^{x + 1} - 123\)
Chúng ta cần tìm các cặp số \(\left(\right. x , y \left.\right)\) thỏa mãn phương trình này.
Bước 2: Phân tích phương trình
- \(2^{x + 1}\) là một lũy thừa của 2.
- \(2^{y}\) cũng là một lũy thừa của 2.
Vì thế, ta có thể viết lại:
\(2^{x + 1} = 5 \times 2^{y} + 123\)
Bước 3: Khám phá các giá trị khả thi
- Để đảm bảo \(2^{x + 1}\) là một lũy thừa của 2, thì vế trái là một số mũ của 2.
- Vế phải là tổng của \(5 \times 2^{y}\) và 123, trong đó \(5 \times 2^{y}\) là một số chẵn, còn 123 là số lẻ.
Lưu ý:
- \(5 \times 2^{y}\) luôn là số chẵn (vì \(2^{y}\) là chẵn trừ khi \(y = 0\), khi \(2^{0} = 1\), thì \(5 \times 1 = 5\) là số lẻ).
- Vì vậy, ta cần xem xét khả năng \(y = 0\) để biết rõ hơn.
Bước 4: Thử các giá trị của \(y\)
Trường hợp 1: \(y = 0\)
\(5 \times 2^{0} = 5\)
Phương trình trở thành:
\(5 = 2^{x + 1} - 123\)
\(2^{x + 1} = 128\)
Vì \(128 = 2^{7}\):
\(x + 1 = 7 \Rightarrow x = 6\)
Vậy, cặp nghiệm là:
\(\boxed{\left(\right. x , y \left.\right) = \left(\right. 6 , 0 \left.\right)}\)
Trường hợp 2: \(y = 1\)
\(5 \times 2^{1} = 10\)
Phương trình:
\(10 = 2^{x + 1} - 123\)
\(2^{x + 1} = 133\)
Không phải là một lũy thừa của 2 (vì \(2^{7} = 128\) và \(2^{8} = 256\)), nên không có nghiệm.
Trường hợp 3: \(y = 2\)
\(5 \times 2^{2} = 20\)
\(20 = 2^{x + 1} - 123\)
\(2^{x + 1} = 143\)
Không phải là lũy thừa của 2.
Các giá trị của \(2^{y}\) tăng dần, và \(5 \times 2^{y}\) sẽ là các số chẵn, cộng 123 (số lẻ) sẽ luôn cho ra tổng là số lẻ.
Vì vậy, \(2^{x + 1}\) phải là số lẻ, nhưng lũy thừa của 2 là số chẵn (trừ \(2^{0} = 1\)), và chỉ có \(2^{0} = 1\) là số lẻ.
Bước 5: Kiểm tra \(y = 0\) — đã có nghiệm
Chúng ta đã thấy khi \(y = 0\), \(x = 6\).
Kết luận:
- Nghiệm duy nhất của phương trình là:
\(\boxed{\left(\right. x , y \left.\right) = \left(\right. 6 , 0 \left.\right)}\)

Xét ΔAHC vuông tại H có \(\sin C=\frac{AH}{AC}\)
=>\(\frac{AH}{10}=\sin30=\frac12\)
=>\(AH=\frac{10}{2}=5\left(\operatorname{cm}\right)\)
ΔAHC vuông tại H
=>\(HA^2+HC^2=CA^2\)
=>\(HC^2=10^2-5^2=100-25=75=\left(5\sqrt3\right)^2\)
=>\(HC=5\sqrt3\left(\operatorname{cm}\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=HA^2\)
=>\(HB=\frac{5^2}{5\sqrt3}=\frac{5}{\sqrt3}=\frac{5\sqrt3}{3}\) (cm)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(AB^2=5^2+\left(\frac{5\sqrt3}{3}\right)^2=25+\frac{25}{3}=\frac{100}{3}\)
=>\(AB=\sqrt{\frac{100}{3}}=\frac{10}{\sqrt3}\) (cm)
a: Xét (O) có
BD,BA là các tiếp tuyến
Do đó: BD=BA
=>B nằm trên đường trung trực của AD(1)
Ta có: OD=OA
=>O nằm trên đường trung trực của AD(2)
Từ (1),(2) suy ra OB là đường trung trực của AD
=>OB⊥AD
Xét (O) có
CA,CE là các tiếp tuyến
Do đó: CA=CE
=>C nằm trên đường trung trực của AE(3)
Ta có: OA=OE
=>O nằm trên đường trung trực của AE(4)
Từ (3),(4) suy ra OC là đường trung trực của AE
=>OC⊥AE
b: BD+CE
=BA+AC
=BC