K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 giờ trước (21:08)

Câu 12: Để hệ vô nghiệm thì \(\frac{m^2}{3}=\frac31<>\frac{m}{1}\)

=>\(\begin{cases}m^2=9\\ m<>3\end{cases}\Rightarrow m=-3\)

Câu 11: x+2y=1

=>x=1-2y=1+1=2

\(\frac12\cdot x_0^2-2\cdot y_0=\frac12\cdot2^2-2\cdot\frac12=2-1=1\)

Câu 10: \(\begin{cases}x+2y=5\\ x-y=-1\end{cases}\Rightarrow\begin{cases}x+2y-x+y=5+1=6\\ x+2y=5\end{cases}\)

=>\(\begin{cases}3y=6\\ x=5-2y\end{cases}\Rightarrow\begin{cases}y=2\\ x=5-2\cdot2=1\end{cases}\)

\(3\cdot x_0^{2020}+2\cdot y_0\)

\(=3\cdot1^{2020}+2\cdot2=3+4=7\)

Câu 9: Để hệ phương trình \(\begin{cases}m^2x+y=3m\\ -4x-y=6\end{cases}\) vô nghiệm thì

\(\frac{m^2}{-4}=\frac{1}{-1}<>\frac{3m}{6}\)

=>\(\begin{cases}m^2=4\\ 3m<>-6\end{cases}\Rightarrow\begin{cases}m\in\left\lbrace2;-2\right\rbrace\\ m<>-2\end{cases}\)

=>m=2

Để hệ phương trình \(\begin{cases}\left(2-a\right)x-y=-2\\ ax-y=6\end{cases}\) vô nghiệm thì \(\frac{2-a}{a}=\frac{-1}{-1}<>-\frac26\)

=>\(\frac{2-a}{a}=1\)

=>2-a=a

=>a=1


8 giờ trước (19:32)

Olm chào em, với câu hỏi này em cần đăng kèm cả hình, có như vậy, thầy cô mới có thể hỗ trợ em được tốt nhất, em nhé.

9 giờ trước (18:43)

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)

=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)

=>Hệ vô nghiệm

b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)

=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)

=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)

c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)

=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)

d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)

=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)

=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)

14 giờ trước (14:00)

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)

=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)

=>Hệ vô nghiệm

b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)

=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)

=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)

c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)

=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)

d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)

=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)

=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)

S
14 giờ trước (14:25)

\(a.\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Leftrightarrow\begin{cases}6x-4y=7\left(1\right)\\ -6x+4y=-9\left(2\right)\end{cases}\)

lấy (1) + (2) ta được:

0x + 0y = -2

vậy phương trình trên vô nghiệm

\(b.\begin{cases}2x-4y=9\\ -3x-6y=-27\end{cases}\Leftrightarrow\begin{cases}6x-12y=27\left(1\right)\\ -6x-12y=-54\left(2\right)\end{cases}\)

lấy (1) - (2) ta được:

12x = 81

⇒ x = 81 : 12 = 6,75

thay x = 6,75 vào (1) ta được:

\(6\cdot6,75-12y=27\)

40,5 - 12y = 27

12y = 40,5 - 27

12y = 13,5

y = 13,5 : 12 = 1,125

kết luận: (x; y) = (6,75; 1,125)

\(c.\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Leftrightarrow\begin{cases}10x+2y=6\left(1\right)\\ 4x-2y=9\left(2\right)\end{cases}\)

lấy (1) + (2) ta được:

14x = 15

x = 15 : 14 = \(\frac{15}{14}\) (3)

thay (3) vào (1) ta được:

\(10\cdot\frac{15}{14}+2y=6\)

\(\frac{75}{7}+2y=6\)

\(2y=6-\frac{75}{7}\)

\(2y=-\frac{33}{7}\)

\(y=-\frac{33}{7}:2=-\frac{33}{7}\cdot\frac12=-\frac{33}{14}\)

kết luận: \(\left(x;y\right)=\left(\frac{15}{14};-\frac{33}{14}\right)\)

\(d.\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Leftrightarrow\begin{cases}4x-6y=-10\left(1\right)\\ -4x+6y=10\left(2\right)\end{cases}\)

lấy (1) + (2) ta được:

0x + 0y = 0

vậy hệ có vô số nghiệm

QT
Quoc Tran Anh Le
Giáo viên
4 tháng 9

7 tháng 9

giải hộ mik bài 4 ạ



thân ai nấy lo đi nhé


ĐKXĐ: x>0

Ta có: \(\frac{\sqrt{x}-1}{x-\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{x-1-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\cdot\left(x-\sqrt{x}+1\right)}\)

Ta có: \(A=\left(x+\frac{1}{\sqrt{x}}\right)\left(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\)

\(=\frac{x\sqrt{x}+1}{\sqrt{x}}\cdot\frac{\sqrt{x}-2}{x\sqrt{x}+1}=\frac{\sqrt{x}-2}{\sqrt{x}}\)

Để A nguyên thì \(\sqrt{x}-2\)\(\sqrt{x}\)

=>-2⋮\(\sqrt{x}\)

=>\(\sqrt{x}\) ∈{1;2}

=>x∈{1;4}

\(a=\sqrt[3]{7+5\sqrt2}+\sqrt[3]{7-5\sqrt2}\)

\(=\sqrt[3]{2\sqrt2+6+\sqrt2+1}+\sqrt[3]{2\sqrt2-6+\sqrt2-1}\)

\(=\sqrt[3]{\left(\sqrt2\right)^3+3\cdot\left(\sqrt2\right)^2\cdot1+3\cdot\sqrt2\cdot1^2+1^3}+\sqrt[3]{\left(\sqrt2\right)^3-3\cdot\left(\sqrt2\right)^2\cdot1+3\cdot\sqrt2\cdot1^2-1^3}\)

\(=\sqrt[3]{\left(\sqrt2+1\right)^3}+\sqrt[3]{\left(\sqrt2-1\right)^3}=\sqrt2+1+\sqrt2-1=2\sqrt2\)

\(D=2a^4+6a^2-28a+2024\)

\(=2\cdot\left(2\sqrt2\right)^4+6\cdot\left(2\sqrt2\right)^2-28\cdot2\sqrt2+2024=2200-56\sqrt2\)

NV
2 tháng 9

Xét trường hợp D nằm ngoài OC (trường hợp còn lại em tự xét).

a.

Do đường tròn đường kính OA cắt OC tại D nên ∠ADO là góc nt chắn nửa đường tròn

\(\Rightarrow\angle ADO=90^0\Rightarrow\angle ADC=90^0\)

=>D thuộc đường tròn đường kính AC (1)

Do CH⊥AB tại H nên \(\angle AHC=90^0\Rightarrow\) H thuộc đường tròn đường kính AC (2)

(1),(2) =>4 điểm A,C,D,H đồng viên

b.

Do A,C,D,H đồng viên (cmt) nên ∠ACD=∠AHD (cùng chắn AD) (3)

Lại có OA=OC (cùng là bán kính của (O)) =>ΔOAC cân tại O

=>∠ACD=∠CAO (4)

(3),(4) =>∠AHD=∠CAO

=>HD song song AC (hai góc so le trong bằng nhau)


NV
2 tháng 9