K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 giờ trước (9:06)

a: \(640=2^7\cdot5;1440=2^5\cdot3^2\cdot5\)

=>ƯCLN(640;1440)\(=2^5\cdot5=32\cdot5=160\)

640⋮a; 1440⋮a

=>a∈ ƯC(640;1440)

mà a lớn nhất

nên a=ƯCLN(640;1440)=160

b: \(450=2\cdot3^2\cdot5^2;210=2\cdot3\cdot5\cdot7\)

=>ƯCLN(450;210)\(=2\cdot3\cdot5=30\)

450⋮a; 210⋮a

=>a∈ ƯC(450;210)

mà a lớn nhất

nên a=ƯCLN(450;210)=30

c: \(128=2^7;210=2\cdot3\cdot5\cdot7\)

=>ƯCLN(128;210)=2

128⋮a; 210⋮a

=>a∈ ƯC(128;210)

=>a∈ Ư(2)

mà 6<a<15

nên a∈∅

d: \(2350=2\cdot5^2\cdot47;1260=2^2\cdot3^2\cdot5\cdot7\)

=>ƯCLN(2350;1260)=\(2\cdot5=10\)

2350⋮a; 1260⋮a

=>a ∈ƯC(2350;1260)

=>a∈ Ư(10)

mà 80<a<140

nên a∈∅

e: \(112=2^4\cdot7;140=2^2\cdot5\cdot7\)

=>ƯCLN(112;140)\(=2^2\cdot7=28\)

112⋮a; 140⋮a

=>a ∈ƯC(112;140)

=>a∈ Ư(28)

mà 10<a<20

nên a=14

f: \(144=2^4\cdot3^2;192=2^6\cdot3\)

=>ƯCLN(144;192)\(=2^4\cdot3=16\cdot3=48\)

144⋮a; 192⋮a

=>a∈ ƯC(144;192)

=>a∈ Ư(48)

mà a<20

nên a∈{1;2;3;4;6;8;12;16}

g: \(420=2^2\cdot3\cdot5\cdot7;700=2^2\cdot5^2\cdot7\)

=>ƯCLN(420;700)\(=2^2\cdot5\cdot7=4\cdot5\cdot7=20\cdot7=140\)

420⋮a; 700⋮a

=>a∈ ƯC(420;700)

=>a∈ Ư(140)

mà a lớn nhất

nên a=140

c: \(\left(x-1\right)^3=\left(-9\right)^3\)

=>x-1=-9

=>x=-9+1=-8

f: \(3x-2^3=7+\left(-9\right)\)

=>3x-8=7-9=-2

=>3x=-2+8=6

=>x=2

NV
5 tháng 9

20.

a.

\(4^{n}=256\)

\(4^{n}=4^4\)

\(n=4\)

b.

\(9^{5n-8}=81\)

\(9^{5n-8}=9^2\)

5n-8=2

5n=10

n=2

c.

\(3^{n+2}:27=3\)

\(3^{n+2}=27.3\)

\(3^{n+2}=81\)

\(3^{n+2}=3^4\)

n+2=4

n=2

d.

\(8^{n+2}.2^3=8^5\)

\(8^{n+2}=8^5:2^3\)

\(8^{n+2}=8^4\)

n+2=4

n=2

NV
5 tháng 9

21.

a.

\(30-2x^2=12\)

\(2x^2=30-12\)

\(2x^2=18\)

\(x^2=18:2=9\)

\(x^2=3^2\)

\(x=\pm3\)

b.

\(\left(9-2x\right)^3=125\)

\(\left(9-2x\right)^3=5^3\)

\(9-2x=5\)

2x=9-5=4

x=2

c.

\(\left(2x-2\right)^4=0\)

2x-2=0

2x=2

x=1

d.

\(\left(x+5\right)^3=\left(2x\right)^3\)

x+5=2x

2x-x=5

x=5

6 tháng 9

20.

4^n=256

4^n=4^4

n=4


9^5n-8=81

9^5n-8=9^2

5n-8=2

5n=10

n=2


3^n+2:27=3

3^n+2:3^3=3

3^n+2-3=3

n+2-3=1

n=2


8^n+2.2^3=8^5

8^n+2.8=8^5

8^n+2+1=8^5

n+2+1=5

n=2


21.

30-2x^2=12

2x^2=30-12

2x^2=18

x^2=9

x^2=3^2

x=3


(9-2x)^3=125

(9-2x)^3=5^3

(9-2x)=5

2x=4

x=2


(2x-2)^4=0

(2x-2)=0

2x=2

x=1


(x+5)^3=(2x)^3

x+5=2x

x+5-2x=0

(x-2x)=-5

-x=-5

x=5

20:

a: \(4^{n}=256\)

=>\(4^{n}=4^4\)

=>n=4

b: \(9^{5n-8}=81\)

=>\(9^{5n-8}=9^2\)

=>5n-8=2

=>5n=10

=>n=2

c: \(3^{n+2}:27=3\)

=>\(3^{n+2}=27\cdot3=81=3^4\)

=>n+2=4

=>n=2

d: \(8^{n+2}\cdot2^3=8^5\)

=>\(8^{n+2}=8^5:8=8^4\)

=>n+2=4

=>n=2

Bài 21:

a: \(30-2x^2=12\)

=>\(2x^2=30-12=18\)

=>\(x^2=9\)

mà x>=0(do x là số tự nhiên)

nên x=3

b: \(\left(9-2x\right)^3=125\)

=>9-2x=5

=>2x=4

=>x=2

c: \(\left(2x-2\right)^4=0\)

=>2x-2=0

=>2x=2

=>x=1

d: \(\left(x+5\right)^3=\left(2x\right)^3\)

=>2x=x+5

=>2x-x=5

=>x=5

7 tháng 9

a) \(M=1+2+2^2+2^3+\cdots+2^{100}\)

\(2M=2+2^2+2^3+2^4+\cdots+2^{101}\)

\(2M-M=\left(2+2^2+2^3+2^4+\cdots+2^{101}\right)-\left(1+2+2^2+2^3+\cdots+2^{100}\right)\)

\(\Rightarrow M=2^{101}-1\)

Vậy \(M=2^{101}-1\)

b) \(N=1+3^2+3^4+3^6+\cdots+3^{100}\)

\(3N=3+3^2+3^4+3^6+3^8+\cdots+3^{102}\)

\(3N-N=\left(3+3^2+3^4+3^6+3^8+\cdots+3^{102}\right)-\left(1+3+3^2+3^4+3^6+\cdots+3^{100}\right)\)

\(\Rightarrow2N=3^{102}-1\)

\(\Rightarrow N=\frac{3^{102}-1}{2}\)

Vậy \(N=\frac{3^{102}-1}{2}\)

c) \(P=1+5^3+5^6+5^9+\cdots+5^{99}\)

\(5^3\cdot P=5^3+5^6+5^9+5^{12}\cdots+5^{102}\)

\(125P-P=\left(5^3+5^6+5^9+5^{12}\cdots+5^{102}\right)-\left(1+5^3+5^6+5^9+\cdots+5^{99}\right)\)

\(\Rightarrow124P=5^{102}-1\)

\(\Rightarrow P=\frac{5^{102}-1}{124}\)

Vậy \(P=\frac{5^{102}-1}{124}\)

a: \(M=1+2+2^2+\cdots+2^{100}\)

=>\(2M=2+2^2+2^3+\cdots+2^{101}\)

=>\(2M-M=2+2^2+2^3+\cdots+2^{101}-1-2-\cdots-2^{100}\)

=>\(M=2^{101}-1\)

b: \(N=1+3^2+3^4+\cdots+3^{100}\)

=>\(9N=3^2+3^4+3^6+\cdots+3^{102}\)

=>\(9N-N=3^2+3^4+\cdots+3^{102}-1-3^2-\cdots-3^{100}\)

=>\(8N=3^{102}-1\)

=>\(N=\frac{3^{102}-1}{8}\)

c: \(P=1+5^3+5^6+\cdots+5^{99}\)

=>\(125P=5^3+5^6+5^9+\cdots+5^{102}\)

=>\(125P-P=5^3+5^6+\cdots+5^{102}-1-5^3-\cdots-5^{99}\)

=>\(124P=5^{102}-1\)

=>\(P=\frac{5^{102}-1}{124}\)

a: \(M=1+2+2^2+\cdots+2^{100}\)

=>\(2M=2+2^2+2^3+\cdots+2^{101}\)

=>\(2M-M=2+2^2+2^3+\cdots+2^{101}-1-2-\cdots-2^{100}\)

=>\(M=2^{101}-1\)

b: \(N=1+3^2+3^4+\cdots+3^{100}\)

=>\(9N=3^2+3^4+3^6+\cdots+3^{102}\)

=>\(9N-N=3^2+3^4+\cdots+3^{102}-1-3^2-\cdots-3^{100}\)

=>\(8N=3^{102}-1\)

=>\(N=\frac{3^{102}-1}{8}\)

c: \(P=1+5^3+5^6+\cdots+5^{99}\)

=>\(125P=5^3+5^6+5^9+\cdots+5^{102}\)

=>\(125P-P=5^3+5^6+\cdots+5^{102}-1-5^3-\cdots-5^{99}\)

=>\(124P=5^{102}-1\)

=>\(P=\frac{5^{102}-1}{124}\)

7 tháng 9

\(3^{x-5}=27\)

<=> \(3^{x-5}=3^3\)

=> x - 5 = 3

=> x = 8

Vậy x = 8

Bài 8:

a: \(5^3=125;3^5=243\)

mà 125<243

nên \(5^3<3^5\)

b: \(7\cdot2^{13}<8\cdot2^{13}=2^3\cdot2^{13}=2^{16}\)

c: \(27^5=\left(3^3\right)^5=3^{3\cdot5}=3^{15}\)

\(243^3=\left(3^5\right)^3=3^{5\cdot3}=3^{15}\)

Do đó: \(27^5=243^5\)

d: \(625^5=\left(5^4\right)^5=5^{4\cdot5}=5^{20}\)

\(125^7=\left(5^3\right)^7=5^{3\cdot7}=5^{21}\)

mà 20<21

nên \(625^5<125^7\)

Bài 9:

a: \(3^{x}\cdot5=135\)

=>\(3^{x}=\frac{135}{5}=27=3^3\)

=>x=3(nhận)

b: \(\left(x-3\right)^3=\left(x-3\right)^2\)

=>\(\left(x-3\right)^3-\left(x-3\right)^2=0\)

=>\(\left(x-3\right)^2\cdot\left\lbrack\left(x-3\right)-1\right\rbrack=0\)

=>\(\left(x-3\right)^2\cdot\left(x-4\right)=0\)

=>\(\left[\begin{array}{l}x-3=0\\ x-4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\left(nhận\right)\\ x=4\left(nhận\right)\end{array}\right.\)

c: \(\left(2x-1\right)^4=81\)

=>\(\left[\begin{array}{l}2x-1=3\\ 2x-1=-3\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=4\\ 2x=-2\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(nhận\right)\\ x=-1\left(loại\right)\end{array}\right.\)

d: \(\left(5x+1\right)^2=3^2\cdot5+76\)

=>\(\left(5x+1\right)^2=9\cdot5+76=45+76=121\)

=>\(\left[\begin{array}{l}5x+1=11\\ 5x+1=-11\end{array}\right.\Rightarrow\left[\begin{array}{l}5x=10\\ 5x=-12\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(nhận\right)\\ x=-\frac{12}{5}\left(loại\right)\end{array}\right.\)

e: \(5+2^{x-3}=29-\left\lbrack4^2-\left(3^2-1\right)\right\rbrack\)

=>\(2^{x-3}+5=29-\left\lbrack16-9+1\right\rbrack\)

=>\(2^{x-3}+5=29-8=21\)

=>\(2^{x-3}=16=2^4\)

=>x-3=4

=>x=4+3=7(nhận)

f: \(3+2^{x-1}=24-\left\lbrack4^2-\left(2^2-1\right)\right\rbrack\)

=>\(2^{x-1}+3=24-\left\lbrack16-4+1\right\rbrack=24-13=11\)

=>\(2^{x-1}=11-3=8=2^3\)

=>x-1=3

=>x=4(nhận)

Bài 6:

a: \(5\cdot5\cdot5\cdot5\cdot5\cdot5=5^6\)

b: \(27\cdot14\cdot7\cdot2=27\cdot14\cdot14=3^3\cdot14^2\)

c: \(x\cdot x\cdot x\cdot y=x^3\cdot y\)

d: \(5^3\cdot5^4=5^{3+4}=5^7\)

e: \(7^8:7^2=7^{8-2}=7^6\)

f: \(42^7:6^7\cdot49=7^7\cdot49=7^7\cdot7^2=7^{7+2}=7^9\)

20:

a: \(4^{n}=256\)

=>\(4^{n}=4^4\)

=>n=4

b: \(9^{5n-8}=81\)

=>\(9^{5n-8}=9^2\)

=>5n-8=2

=>5n=10

=>n=2

c: \(3^{n+2}:27=3\)

=>\(3^{n+2}=27\cdot3=81=3^4\)

=>n+2=4

=>n=2

d: \(8^{n+2}\cdot2^3=8^5\)

=>\(8^{n+2}=8^5:8=8^4\)

=>n+2=4

=>n=2

Bài 21:

a: \(30-2x^2=12\)

=>\(2x^2=30-12=18\)

=>\(x^2=9\)

mà x>=0(do x là số tự nhiên)

nên x=3

b: \(\left(9-2x\right)^3=125\)

=>9-2x=5

=>2x=4

=>x=2

c: \(\left(2x-2\right)^4=0\)

=>2x-2=0

=>2x=2

=>x=1

d: \(\left(x+5\right)^3=\left(2x\right)^3\)

=>2x=x+5

=>2x-x=5

=>x=5

S
7 tháng 9

bài 20:

\(a.4^{n}=256\)

\(4^{n}=4^4\)

⇒ n = 4

b . \(9^{5n-8}=81\)

\(9^{5n-8}=9^2\)

⇒ 5n - 8 = 2

5n = 2 + 8

5n = 10

n = 10 : 5 = 2

c. \(3^{n+2}:27=3\)

\(3^{n+2}=3\cdot27\)

\(3^{n+2}=81\)

\(3^{n+2}=3^4\)

⇒ n + 2 = 4

⇒ n = 4 - 2 = 2

d. \(8^{n+2}\cdot2^3=8^5\)

\(8^{n+2}=8^5:2^3\)

\(8^{n+2}=8^4\)

⇒ n + 2 = 4

⇒ n = 4 - 2 = 2

bài 21 :

\(a.30-2x^2=12\)

\(2x^2=30-12\)

\(2x^2=18\)

\(x^2=18:2\)

\(x^2=9\)

⇒ x = 3 hoặc x = -3

b. \(\left(9-2x\right)^3=125\)

\(\left(9-2x\right)^3=5^3\)

⇒ 9 - 2x = 5

2x = 9 - 5

2x = 4

x = 4 : 2 = 2

c. \(\left(2x-2\right)^4=0\)

⇒ 2x - 2 = 0

2x = 2

x = 2 : 2 = 1

d. \(\left(x+5\right)^3=\left(2x\right)^3\)

⇒ x + 5 = 2x

⇒ 2x - x = 5

x = 5