K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9

giải hộ mik bài 4 ạ



thân ai nấy lo đi nhé


ĐKXĐ: x>0

Ta có: \(\frac{\sqrt{x}-1}{x-\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{x-1-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\cdot\left(x-\sqrt{x}+1\right)}\)

Ta có: \(A=\left(x+\frac{1}{\sqrt{x}}\right)\left(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\)

\(=\frac{x\sqrt{x}+1}{\sqrt{x}}\cdot\frac{\sqrt{x}-2}{x\sqrt{x}+1}=\frac{\sqrt{x}-2}{\sqrt{x}}\)

Để A nguyên thì \(\sqrt{x}-2\)\(\sqrt{x}\)

=>-2⋮\(\sqrt{x}\)

=>\(\sqrt{x}\) ∈{1;2}

=>x∈{1;4}

\(a=\sqrt[3]{7+5\sqrt2}+\sqrt[3]{7-5\sqrt2}\)

\(=\sqrt[3]{2\sqrt2+6+\sqrt2+1}+\sqrt[3]{2\sqrt2-6+\sqrt2-1}\)

\(=\sqrt[3]{\left(\sqrt2\right)^3+3\cdot\left(\sqrt2\right)^2\cdot1+3\cdot\sqrt2\cdot1^2+1^3}+\sqrt[3]{\left(\sqrt2\right)^3-3\cdot\left(\sqrt2\right)^2\cdot1+3\cdot\sqrt2\cdot1^2-1^3}\)

\(=\sqrt[3]{\left(\sqrt2+1\right)^3}+\sqrt[3]{\left(\sqrt2-1\right)^3}=\sqrt2+1+\sqrt2-1=2\sqrt2\)

\(D=2a^4+6a^2-28a+2024\)

\(=2\cdot\left(2\sqrt2\right)^4+6\cdot\left(2\sqrt2\right)^2-28\cdot2\sqrt2+2024=2200-56\sqrt2\)

13 tháng 9

helpppp

Ta có: \(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\)

\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)

Ta có: \(P=\left(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\right):\frac{4x}{\left(x-1\right)^2}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\cdot\frac{\left(x-1\right)^2}{4x}\)

\(=\frac{1}{2\sqrt{x}}\cdot\left(\sqrt{x}-1\right)^2\cdot\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

18: Gọi thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là x(giờ) và y(giờ)

(ĐIều kiện: x>0; y>0)

Trong 1 giờ, người thứ nhất làm được: \(\frac{1}{x}\) (công việc)

Trong 1 giờ, người thứ hai làm được: \(\frac{1}{y}\) (công việc)

Trong 1 giờ, hai người làm được: \(\frac{1}{16}\) (công việc)

Do đó, ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\left(1\right)\)

Trong 3 giờ, người thứ nhất làm được: \(3\cdot\frac{1}{x}=\frac{3}{x}\) (công việc)

Trong 6 giờ, người thứ hai làm được: \(6\cdot\frac{1}{y}=\frac{6}{y}\) (công việc)

Nếu người thứ nhất làm trong 3 giờ và người thứ hai làm trong 6 giờ thì hai người làm được 25% công việc nên ta có: \(\frac{3}{x}+\frac{6}{y}=\frac14\left(2\right)\)

Từ (1),(2) ta có hệ phương trình:

\(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\\ \frac{3}{x}+\frac{6}{y}=\frac14\end{cases}\Rightarrow\begin{cases}\frac{6}{x}+\frac{6}{y}=\frac{6}{16}=\frac38\\ \frac{3}{x}+\frac{6}{y}=\frac14\end{cases}\)

=>\(\begin{cases}\frac{6}{x}+\frac{6}{y}-\frac{3}{x}-\frac{6}{y}=\frac38-\frac14=\frac18\\ \frac{1}{x}+\frac{1}{y}=\frac{1}{16}\end{cases}\Rightarrow\begin{cases}\frac{3}{x}=\frac18\\ \frac{1}{x}+\frac{1}{y}=\frac{1}{16}\end{cases}\)

=>\(\begin{cases}x=24\\ \frac{1}{y}=\frac{1}{16}-\frac{1}{24}=\frac{3}{48}-\frac{2}{48}=\frac{1}{48}\end{cases}\Rightarrow\begin{cases}x=24\\ y=48\end{cases}\) (nhận)

Vậy: thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là 24(giờ) và 48(giờ)

17: Gọi khối lượng thóc đơn vị thứ nhất và đơn vị thứ hai thu hoạch được trong năm ngoái lần lượt là x(tấn) và y(tấn)

(Điều kiện: x>0; y>0)

Năm nay, đơn vị thứ nhất sản xuất được: \(x\left(1+15\%\right)=1,15x\) (tấn)

Năm nay, đơn vị thứ hai sản xuất được:

\(y\left(1+12\%\right)=1,12y\) (tấn)

Năm nay, hai đơn vị sản xuất được 4095 tấn thóc nên 1,15x+1,12y=4095(1)

Năm ngoái, hai đơn vị sản xuất được 3600 tấn thóc nên x+y=3600(2)

Từ (1),(2) ta có hệ phương trình:

\(\begin{cases}1,15x+1,12y=4095\\ x+y=3600\end{cases}\Rightarrow\begin{cases}1,15x+1,12y=4095\\ 1,15x+1,15y=4140\end{cases}\)

=>\(\begin{cases}1,15x+1,15y-1,15x-1,12y=4140-4095=45\\ x+y=3600\end{cases}\)

=>\(\begin{cases}0,03y=45\\ x+y=3600\end{cases}\Rightarrow\begin{cases}y=45:0,03=1500\\ x=3600-1500=2100\end{cases}\) (nhận)

Năm nay, đơn vị thứ nhất sản xuất được: \(2100\cdot1,15=2415\) tấn
năm nay, đơn vị thứ hai sản xuất được: \(1500\cdot1,12=1680\) (tấn)

a: ĐKXĐ: x>=-4

\(x^2+3x+24=12\sqrt{x+4}\)

=>\(x\left(x+3\right)-12\sqrt{x+4}+24=0\)

=>\(x\left(x+3\right)-12\left(\sqrt{x+4}-2\right)=0\)

=>\(x\left(x+3\right)-12\cdot\frac{x+4-4}{\sqrt{x+4}+2}=0\)

=>\(x\left(x+3\right)-\frac{12x}{\sqrt{x+4}+2}=0\)

=>\(x\left(x+3-\frac{12}{\sqrt{x+4}+2}\right)=0\)

=>\(x\left\lbrack x+\frac{3\sqrt{x+4}+6-12}{\sqrt{x+4}+2}\right\rbrack=0\)

=>\(x\left\lbrack x+\frac{3\sqrt{x+4}-6}{\sqrt{x+4}+2}\right\rbrack=0\)

=>\(x\cdot\left\lbrack x+\frac{3\left(\sqrt{x+4}-2\right)}{\sqrt{x+4}+2}\right\rbrack=0\)

=>\(x\cdot\left\lbrack x+3\cdot\frac{x+4-4}{\left(\sqrt{x+4}+2\right)\left(\sqrt{x+4}+2\right)}\right\rbrack=0\)

=>\(x^2\left(1+\frac{3}{\left(\sqrt{x+4}+2\right)^2}\right)=0\)

=>\(x^2=0\)

=>x=0(nhận)

b:

ĐKXĐ: x>=-5/2

\(x^2+\sqrt{2x+5}=2x+3+\sqrt{x^2+2}\)

=>\(x^2-2x-3=\sqrt{x^2+2}-\sqrt{2x+5}\)

=>\(\left(x-3\right)\left(x+1\right)=\frac{x^2+2-2x-5}{\sqrt{x^2+2}+\sqrt{2x+5}}\)

=>\(\left(x-3\right)\left(x+1\right)\left(1-\frac{1}{\sqrt{x^2+2}+\sqrt{2x+5}}\right)=0\)

=>(x-3)(x+1)=0

=>\(\left[\begin{array}{l}x=3\left(nhận\right)\\ x=-1\left(nhận\right)\end{array}\right.\)