
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bạn học CMATH phải không vậy bạn? Mình thấy phiếu quen quen.
a: Kẻ OI⊥CD tại I
ΔOCD cân tại O
mà OI là đường cao
nên I là trung điểm của CD
=>IC=ID
ΔOMN cân tại O
mà OI là đường cao
nên I là trung điểm của MN
=>IM=IN
Ta có: IM+MC=IC
IN+ND=ID
mà IM=IN và IC=ID
nên MC=ND
b: ΔOMN vuông tại O có OM=ON
nên ΔOMN vuông cân tại O
=>\(MN^2=OM^2+ON^2=2\cdot OM^2\)
=>\(MN=OM\cdot\sqrt2\)
Vì CM=MN=ND
nên \(CM=MN=ND=\frac{CD}{3}\)
=>\(CD=3\cdot MN=3\sqrt2\cdot OM\)
I là trung điểm của CD
=>\(IC=\frac{CD}{2}=\frac{3\sqrt2}{2}\cdot OM\)
ΔOMN vuông cân tại O
=>\(\hat{OMI}=45^0\)
Xét ΔOMI vuông tại I có \(\hat{OMI}=45^0\)
nên ΔOMI vuông cân tại I
=>\(IM=IO\)
ΔOMI vuông tại I
=>\(IM^2+IO^2=OM^2\)
=>\(OM^2=2\cdot IO^2\)
=>\(IO^2=\frac{OM^2}{2}\)
ΔOIC vuông tại I
=>\(OI^2+IC^2=OC^2\)
=>\(OI^2=OC^2-IC^2=R^2-\left(\frac{3\sqrt2}{2}\cdot OM\right)^2=R^2-OM^2\cdot\frac92\)
=>\(\frac{OM^2}{2}+\frac92\cdot OM^2=R^2\)
=>\(R^2=5\cdot OM^2\)
=>\(OM^2=\frac{R^2}{5}\)
=>\(OM=\frac{R\sqrt5}{5}\)

Bạn học CMATH phải không vậy bạn? Mình thấy phiếu quen quen.

Bạn học CMATH phải không vậy bạn? Mình thấy quen quen.

a. xét △ BIA và △ BAC có:
góc BIA = góc BAC = 90 độ
góc IAB = góc ACB (cùng phụ với góc B)
⇒ △ BIA ~ △ BAC (g-g)
\(\Rightarrow\frac{AB}{IB}=\frac{BC}{AB}\Rightarrow AB^2=IB\cdot BC\)
b. xét △ BIA và △ AIC ta có:
góc BIA = góc AIC = 90 độ
góc IAB = góc ICA (cùng phụ với góc B)
⇒ △ BIA ~ △ AIC (g-g)
\(\Rightarrow\frac{IA}{IB}=\frac{IC}{IA}\Rightarrow IA^2=IB\cdot IC\)
c. áp dụng định lý pythagore vào △ ABC vuông tại A ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{26^2-10^2}=24\left(\operatorname{cm}\right)\)
ta có: AB.AC = BC.AI
\(\Rightarrow AI=\frac{AB\cdot AC}{BC}=\frac{24\cdot10}{26}=\frac{120}{13}\left(\operatorname{cm}\right)\)
△ ABC vuông tại A có:
\(\sin B=\frac{AC}{BC}=\frac{10}{26}\Rightarrow\) góc B ≈ 23⁰
⇒ góc C = 90⁰ - 23⁰ = 67⁰
d. xét tứ giác AHIK có:
góc BAC = góc AHI = góc IKA = 90 độ
⇒ tứ giác AHIK là hình chữ nhật
⇒ AI = HK = \(\frac{120}{13}\left(\operatorname{cm}\right)\)
e. xét △ AKI và △ AIC ta có:
góc AKI = góc AIC = 90 độ
góc AIK = góc ACI (cùng phụ với góc IAK)
⇒ △ AKI ~ △ AIC (g-g)
⇒ \(\frac{AK}{AI}=\frac{AI}{AC}\Rightarrow AI^2=AK\cdot AC\) (1)
áp dụng định lý pythagore vào △ AIB vuông tại I ta có:
\(AI^2=AB^2-BI^2\) (2)
TỪ (1) và (2) ⇒ \(AK\cdot AC=AB^2-BI^2\)
gọi O là giao điểm của đường chéo HK và AI
AHIK là hình chữ nhật ⇒ OH = OA
⇒ △ OHA cân tại O
⇒ góc OHA = góc OAH
xét △ AHK và △ ACB ta có:
góc A chung
góc AHK = góc ACB (cùng bằng HAO)
⇒ △ AHK ~ △ ACB (g-g)
f. vì góc ACB = góc IAB (câu a)
nên \(\cot ACB=\cot IAB=\frac{AH}{HI}\) (3)
mà góc AHO = góc IAB (câu e)
\(\Rightarrow\cot IAB=\cot AHO=\frac{AH}{AK}\) (4)
từ (3) và (4) \(\frac{AH}{HI}=\frac{AH}{AK}\)
mà HI = AK (tứ giác AHIK là hình chữ nhật)
\(\Rightarrow\cot ACB=\frac{AH}{AK}\Rightarrow AH=AK\cdot\cot ACB\) (đpcm)

a. xét △ BIA và △ BAC có:
góc BIA = góc BAC = 90 độ
góc IAB = góc ACB (cùng phụ với góc B)
⇒ △ BIA ~ △ BAC (g-g)
\(\Rightarrow\frac{AB}{IB}=\frac{BC}{AB}\Rightarrow AB^2=IB\cdot BC\)
b. xét △ BIA và △ AIC ta có:
góc BIA = góc AIC = 90 độ
góc IAB = góc ICA (cùng phụ với góc B)
⇒ △ BIA ~ △ AIC (g-g)
\(\Rightarrow\frac{IA}{IB}=\frac{IC}{IA}\Rightarrow IA^2=IB\cdot IC\)
c. áp dụng định lý pythagore vào △ ABC vuông tại A ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{26^2-10^2}=24\left(\operatorname{cm}\right)\)
ta có: AB.AC = BC.AI
\(\Rightarrow AI=\frac{AB\cdot AC}{BC}=\frac{24\cdot10}{26}=\frac{120}{13}\left(\operatorname{cm}\right)\)
△ ABC vuông tại A có:
\(\sin B=\frac{AC}{BC}=\frac{10}{26}\Rightarrow\) góc B ≈ 23⁰
⇒ góc C = 90⁰ - 23⁰ = 67⁰
d. xét tứ giác AHIK có:
góc BAC = góc AHI = góc IKA = 90 độ
⇒ tứ giác AHIK là hình chữ nhật
⇒ AI = HK = \(\frac{120}{13}\left(\operatorname{cm}\right)\)
e. xét △ AKI và △ AIC ta có:
góc AKI = góc AIC = 90 độ
góc AIK = góc ACI (cùng phụ với góc IAK)
⇒ △ AKI ~ △ AIC (g-g)
⇒ \(\frac{AK}{AI}=\frac{AI}{AC}\Rightarrow AI^2=AK\cdot AC\) (1)
áp dụng định lý pythagore vào △ AIB vuông tại I ta có:
\(AI^2=AB^2-BI^2\) (2)
TỪ (1) và (2) ⇒ \(AK\cdot AC=AB^2-BI^2\)
gọi O là giao điểm của đường chéo HK và AI
AHIK là hình chữ nhật ⇒ OH = OA
⇒ △ OHA cân tại O
⇒ góc OHA = góc OAH
xét △ AHK và △ ACB ta có:
góc A chung
góc AHK = góc ACB (cùng bằng HAO)
⇒ △ AHK ~ △ ACB (g-g)
f. vì góc ACB = góc IAB (câu a)
nên \(\cot ACB=\cot IAB=\frac{AH}{HI}\) (3)
mà góc AHO = góc IAB (câu e)
\(\Rightarrow\cot IAB=\cot AHO=\frac{AH}{AK}\) (4)
từ (3) và (4) \(\frac{AH}{HI}=\frac{AH}{AK}\)
mà HI = AK (tứ giác AHIK là hình chữ nhật)
\(\Rightarrow\cot ACB=\frac{AH}{AK}\Rightarrow AH=AK\cdot\cot ACB\) (đpcm)

a. xét △ BIA và △ BAC có:
góc BIA = góc BAC = 90 độ
góc IAB = góc ACB (cùng phụ với góc B)
⇒ △ BIA ~ △ BAC (g-g)
\(\Rightarrow\frac{AB}{IB}=\frac{BC}{AB}\Rightarrow AB^2=IB\cdot BC\)
b. xét △ BIA và △ AIC ta có:
góc BIA = góc AIC = 90 độ
góc IAB = góc ICA (cùng phụ với góc B)
⇒ △ BIA ~ △ AIC (g-g)
\(\Rightarrow\frac{IA}{IB}=\frac{IC}{IA}\Rightarrow IA^2=IB\cdot IC\)
c. áp dụng định lý pythagore vào △ ABC vuông tại A ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{26^2-10^2}=24\left(\operatorname{cm}\right)\)
ta có: AB.AC = BC.AI
\(\Rightarrow AI=\frac{AB\cdot AC}{BC}=\frac{24\cdot10}{26}=\frac{120}{13}\left(\operatorname{cm}\right)\)
△ ABC vuông tại A có:
\(\sin B=\frac{AC}{BC}=\frac{10}{26}\Rightarrow\) góc B ≈ 23⁰
⇒ góc C = 90⁰ - 23⁰ = 67⁰
d. xét tứ giác AHIK có:
góc BAC = góc AHI = góc IKA = 90 độ
⇒ tứ giác AHIK là hình chữ nhật
⇒ AI = HK = \(\frac{120}{13}\left(\operatorname{cm}\right)\)
e. xét △ AKI và △ AIC ta có:
góc AKI = góc AIC = 90 độ
góc AIK = góc ACI (cùng phụ với góc IAK)
⇒ △ AKI ~ △ AIC (g-g)
⇒ \(\frac{AK}{AI}=\frac{AI}{AC}\Rightarrow AI^2=AK\cdot AC\) (1)
áp dụng định lý pythagore vào △ AIB vuông tại I ta có:
\(AI^2=AB^2-BI^2\) (2)
TỪ (1) và (2) ⇒ \(AK\cdot AC=AB^2-BI^2\)
gọi O là giao điểm của đường chéo HK và AI
AHIK là hình chữ nhật ⇒ OH = OA
⇒ △ OHA cân tại O
⇒ góc OHA = góc OAH
xét △ AHK và △ ACB ta có:
góc A chung
góc AHK = góc ACB (cùng bằng HAO)
⇒ △ AHK ~ △ ACB (g-g)
f. vì góc ACB = góc IAB (câu a)
nên \(\cot ACB=\cot IAB=\frac{AH}{HI}\) (3)
mà góc AHO = góc IAB (câu e)
\(\Rightarrow\cot IAB=\cot AHO=\frac{AH}{AK}\) (4)
từ (3) và (4) \(\frac{AH}{HI}=\frac{AH}{AK}\)
mà HI = AK (tứ giác AHIK là hình chữ nhật)
\(\Rightarrow\cot ACB=\frac{AH}{AK}\Rightarrow AH=AK\cdot\cot ACB\) (đpcm)
Bạn học CMATH phải không vậy bạn? Mình thấy phiếu quen quen.
Học CMATH à bạn ?