K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

15 giờ trước (22:13)

bạn ơi, mik ko thấy

Bài 1:Sửa đề: \(\hat{B}-\hat{C}=30^0\)

Ta có: ABCD là hình thang

=>AB//CD

=>\(\hat{A}+\hat{D}=180^0\)

=>\(3\cdot\hat{D}+\hat{D}=180^0\)

=>\(4\cdot\hat{D}=180^0\)

=>\(\hat{D}=\frac{180^0}{4}=45^0\)

\(\hat{A}=3\cdot\hat{D}=3\cdot45^0=135^0\)

Ta có: AB//CD

=>\(\hat{B}+\hat{C}=180^0\)

\(\hat{B}-\hat{C}=30^0\)

nên \(\hat{B}=\frac{180^0+30^0}{2}=105^0;\hat{C}=105^0-30^0=75^0\)

Bài 3:

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\hat{HAB}\) chung

Do đó: ΔAHB=ΔAKC

=>AH=AK và BH=CK

Xét ΔABC có \(\frac{AK}{AB}=\frac{AH}{AC}\)

nên KH//BC

Xét tứ giác BKHC có KH//BC và KC=BH

nên BKHC là hình thang cân

Bài 4:Sửa đề: Bỏ câu AC cắt BD tại O

b: Xét ΔABD và ΔBAC có

AB chung

BD=AC

AD=BC

Do đó: ΔABD=ΔBAC

=>\(\hat{ABD}=\hat{BAC}\)

=>\(\hat{IAB}=\hat{IBA}\)

=>IA=IB

c:

Xét ΔODC có \(\hat{ODC}=\hat{OCD}\)

nên ΔOCD cân tại O

=>OD=OC

=>O nằm trên đường trung trực của DC(1)

Ta có: IA+IC=AC

IB+ID=BD

mà IA=IB và AC=BD

nên IC=ID

=>I nằm trên đường trung trực của DC(2)

Từ (1),(2) suy ra OI là đường trung trực của DC

Ta có: OA+AD=OD

OB+BC=OC

mà AD=BC và OC=OD

nên OA=OB

=>O nằm trên đường trung trực của AB(3)

Ta có: IA=IB

=>I nằm trên đường trung trực của AB(4)

Từ (3),(4) suy ra OI là đường trung trực của AB

a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

b: Điểm D ở đâu vậy bạn?

Bài 5:

a: \(\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)

\(=x^3+y^3\)

b: \(M=x^3+y^3+3xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)

\(=1^3-3xy+3xy=1\)

\(N=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left\lbrack\left(x+y\right)^2-2xy\right\rbrack+6x^2y^2\)

\(=1^3-3xy\cdot1+3xy\left\lbrack1+2xy\right\rbrack-6x^2y^2\)

=1-3xy+3xy\(+6x^2y^2-6x^2y^2\)

=1

Bài 4:

a: \(\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)+6x^2=5\)

=>\(x^3-6x^2+12x-8-x\left(x^3-1\right)+6x^2=5\)

=>\(x^3+12x-8-x^3+x=5\)

=>13x-8=5

=>13x=13

=>x=1

b: \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)

=>\(x^3-6x^2+12x-8-x^3+6x^2=4\)

=>12x-8=4

=>12x=12

=>x=1

c: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)

=>\(x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1=28\)

=>\(9x^3+9x^2+27x+28-9x^3-6x^2-x=28\)

=>\(3x^2+26x=0\)

=>x(3x+26)=0

=>\(\left[\begin{array}{l}x=0\\ 3x+26=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-\frac{26}{3}\end{array}\right.\)

d: \(\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)

=>\(x^6-3x^4+3x^2-1-\left(x^6-1\right)=0\)

=>\(-3x^4+3x^2=0\)

=>\(-3x^2\left(x^2-1\right)=0\)

=>\(\left[\begin{array}{l}x^2=0\\ x^2=1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=1\\ x=-1\end{array}\right.\)

e: \(\left(x+1\right)^3+\left(x-2\right)^3-2x^2\left(x-\frac32\right)=3\)

=>\(x^3+3x^2+3x+1+x^3-6x^2+12x-8-2x^3+3x^2=3\)

=>15x-7=3

=>15x=10

=>\(x=\frac{10}{15}=\frac23\)

f: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)

=>\(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)

=>\(6x^2+2-6x^2+12x-6=-10\)

=>12x-4=-10

=>12x=-6

=>\(x=-\frac{6}{12}=-\frac12\)

Bài 3:

a: \(A=x^3+12x^2+48x+64\)

\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3=\left(x+4\right)^3\)

Khi x=6 thì \(A=\left(6+4\right)^3=10^3=1000\)

b: \(B=x^3-6x^2+12x-8\)

\(=x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3\)

\(=\left(x-2\right)^3\)

Khi x=22 thì \(B=\left(22-2\right)^3=20^3=8000\)

c: \(C=8x^3-12x^2+6x-1\)

\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)

\(=\left(2x-1\right)^3\)

Thay x=25,5 vào C, ta được:

\(C=\left(2\cdot25,5-1\right)^3=50^3=125000\)

d: \(D=1-x+\frac{x^2}{3}-\frac{x^3}{27}\)

\(=1^3-3\cdot1^2\cdot\frac13x+3\cdot1\cdot\left(\frac13x\right)^3-\left(\frac13x\right)^3=\left(1-\frac13x\right)^3\)

Thay x=-27 vào D, ta được:

\(D=\left\lbrack1-\left(-\frac13\right)\cdot27\right\rbrack^3=10^3=1000\)

e: \(E=\frac{x^3}{y^3}+\frac{6x^2}{y^2}+12\cdot\frac{x}{y}+8\)

\(=\left(\frac{x}{y}\right)^3+3\cdot\left(\frac{x}{y}\right)^2\cdot2+3\cdot\frac{x}{y}\cdot2^2+2^3\)

\(=\left(\frac{x}{y}+2\right)^3\)

Thay x=36;y=2 vào D, ta được:

\(D=\left(\frac{36}{2}+2\right)^3=\left(18+2\right)^3=20^3=8000\)

Bài 2:

a: \(x^3-3x^2+3x-1\)

\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3=\left(x-1\right)^3\)

b: \(8-12x+6x^2-x^3=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3=\left(2-x\right)^3\)

c: \(27+27x+9x^2+x^3\)

\(=x^3+3\cdot x^2\cdot3+3\cdot x\cdot3^2+3^3\)

\(=\left(x+3\right)^3\)

d: \(\left(x-y\right)^3+\left(x-y\right)^2+\frac13\left(x-y\right)+\frac{1}{27}\)

\(=\left(x-y\right)^3+3\cdot\left(x-y\right)^2\cdot\frac13+3\cdot\left(x-y\right)\cdot\left(\frac13\right)^2+\left(\frac13\right)^3\)

\(=\left(x-y+\frac13\right)^3\)

19 tháng 8

trình


1: Xét ΔBAC có KI//AC

nên \(\frac{BK}{BA}=\frac{BI}{BC}\)

Xét ΔBAC có IE//AB

nên \(\frac{CE}{CA}=\frac{CI}{CB}\)

ta có: \(\frac{BK}{BA}+\frac{CE}{CA}\)

\(=\frac{BI}{BC}+\frac{CI}{BC}=\frac{BC}{BC}=1\)

2: Qua M, kẻ MG//IE(G∈AC)

=>DE//MG

Xét ΔAMG có DE//MG

nên \(\frac{AE}{AG}=\frac{DE}{MG}\)

=>\(\frac{DE}{AE}=\frac{MG}{AG}\)

ta có: MG//IE

IE//AB

Do đó: MG//AB

Xét ΔABC có

M là trung điểm của BC

MG//AB

Do đó: G là trung điểm của AC

=>GA=GC

=>\(\frac{DE}{AE}=\frac{MG}{AG}=\frac{MG}{CG}\)

Xét ΔCAB có MG//AB

nên \(\frac{MG}{AB}=\frac{CG}{AC}\)

=>\(\frac{MG}{CG}=\frac{AB}{AC}\)

=>\(\frac{DE}{AE}=\frac{AB}{AC}\)

c:

Xét tứ giác AKIE có

AK//IE

AE//KI

Do đó: AKIE là hình bình hành

=>KI=AE: AK=IE

Xét ΔBAC có KI//AC
nên \(\frac{BK}{BA}=\frac{KI}{AC}\)

=>\(\frac{BK}{KI}=\frac{AB}{AC}\)

=>\(\frac{DE}{AE}=\frac{BK}{KI}\)

mà AE=KI

nên DE=BK

Bài 4:

AB//CD

=>\(\hat{BAK}=\hat{AKD}\) (hai góc so le trong)

\(\hat{BAK}=\hat{DAK}\) (AK là phân giác của góc BAD)

nên \(\hat{DAK}=\hat{DKA}\)

=>DA=DK

Ta có: DK+KC=DC

DA+BC=DC

mà DK=DA

nên CK=CB

=>ΔCKB cân tại C

=>\(\hat{CKB}=\hat{CBK}\)

\(\hat{CKB}=\hat{ABK}\) (hai góc so le trong, AB//CD)

nên \(\hat{ABK}=\hat{CBK}\)

=>BK là phân giác của góc ABC

Bài 2:

a: Xét ΔDAB có

K,E lần lượt là trung điểm của DA,DB

=>KE là đường trung bình của ΔDAB

=>KE//AB và \(KE=\frac{AB}{2}\)

Xét ΔCAB có

F,G lần lượt là trung điểm của CA,CB

Do đó: FG là đường trung bình của ΔCAB

=>FG//AB và \(FG=\frac{AB}{2}\)

Xét hình thang ABCD có

K,G lần lượt là trung điểm của AD,BC

=>KG là đường trung bình của hình thang ABCD

=>KG//AB//CD và \(KG=\frac12\left(AB+CD\right)\)

Ta có: FG//AB

KG//AB

FG,KG có điểm chung là G

Do đó: F,G,K thẳng hàng(1)

ta có: KE//AB

KG//AB

KE,KG có điểm chung là K

Do đó: K,E,G thẳng hàng(2)

Từ (1),(2) suy ra K,E,F,G thẳng hàng

b: Ta có: KE+EF+FG=KG

=>\(EF+\frac12AB+\frac12AB=\frac12\left(CD+AB\right)\)

=>\(EF=\frac12\left(CD+AB-2AB\right)=\frac12\left(CD-AB\right)\)

S
24 tháng 8

bài 1:

\(A=-2xy+\frac32xy^2+\frac12xy^2+xy-3\)

\(=\left(\frac32+\frac12\right)xy^2+\left(-2xy+xy\right)-3\)

\(=2xy^2-xy-3\) (bậc 3)

\(B=-xy^2z+2x^2yz-xyz-3xy^2z-2x^2yz\)

\(=\left(2x^2yz-2x^2yz\right)+\left(-xy^2z-3xy^2z\right)-xyz\)

\(=-4xy^2z-xyz\) (bậc 4)

\(C=4x^2y^3+x^4-2x^2y^3+5x^4-2x^2y^3+3\)

\(=\left(4-2-2\right)x^2y^3+\left(1+5\right)x^4+3\)

\(=6x^4+3\) (bậc 4)

\(D=\frac34xy^2-2xy+3-\frac12xy^2-4xy-7\)

\(=\left(\frac34-\frac12\right)xy^2+\left(-2xy-4xy\right)+\left(3-7\right)\)

\(=\frac14xy^2-6xy-4\) (bậc 3)

\(E=-\frac34x^2y-5xy+\frac12x^2y+10xy-x^2y+xy\)

\(=\left(-\frac34+\frac12-1\right)x^2y+\left(-5+10+1\right)xy\)

\(=-\frac54x^2y+6xy\) (bậc 3)

\(F=3xy^2z-xy^2z-xyz+2xy^2z-3xyz-5xy^2z\)

\(=\left(3-1+2-5\right)xy^2z+\left(-1-3\right)xyz\)

\(=-xy^2z-4xyz\) (bậc 4)

bài 2; 1. thay x=y=-1 vào A ta được:

\(A=6\left(-1\right)\left(-1\right)^2+7\left(-1\right)\left(-1\right)^3+8\left(-1\right)^2\left(-1\right)^3=-7\)

2. \(B=x^6+2x^2y^3-x^2+xy-x^2y^3-x^6+x^5=x^2y^3+xy\)

thay x=-2; y=-1 vào B ta được:

\(4\cdot\left(-1\right)+2=-2\)

3. \(C=7xy^2-4xy+2xy^2-xy-9xy^2+5xy-\frac12x^2y^3=-\frac12x^2y^3\)

thay x = 15; y = -3 vào C ta được:

\(C=-\frac12\cdot15^2\cdot\left(-3\right)^3=3037,5\)

4. \(D=\frac23x^2y+3x^2y-x^2y-1=\frac83x^2y-1\)

thay x = -3; y = 1 vào D ta được:

\(\frac83\cdot\left(-3\right)^2\cdot1-1=23\)

bài 4:

1. \(A+B=\left(x+2y\right)+\left(x-2y\right)=2x\)

\(A-B=\left(x+2y\right)-\left(x-2y\right)=4y\)

2. \(B+A=\left(x^3+2xy^2-2\right)+\left(2x^2y-x^3-3xy^2+1\right)\)

\(=2x^2y+\left(2xy^2-xy^2\right)+\left(-2+1\right)\)

\(=2x^2y+xy^2-1\)

\(B-A=\left(x^3+2xy^2-2\right)-\left(2x^2y-x^3-xy^2+1\right)\)

\(=x^3+2xy^2-2-2x^2y+x^3+xy^2-1\)

\(=2x^3-2x^2y+3xy^2-3\)

3. \(A-B=\left(\frac12x^2y+xy^3-\frac52x^3y^2+x^3\right)-\left(\frac72x^3y^2-\frac12x^2y+xy^3\right)\)

\(=\frac12x^2y+\frac12x^2y+\left(xy^3-xy^3\right)+\left(-\frac52-\frac72\right)x^3y^2+x^3\)

\(=x^2y-6x^3y^2+x^3\)

\(B-A=-\left(A-B\right)=-\left(x^2y-6x^3y^2+x^3\right)=6x^3y^2-x^2y-x^3\)

24 tháng 8

giúp em làm bài 1,2,4 với ạ

em cảm ơn ạ