
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

1: Xét ΔBAC có KI//AC
nên \(\frac{BK}{BA}=\frac{BI}{BC}\)
Xét ΔBAC có IE//AB
nên \(\frac{CE}{CA}=\frac{CI}{CB}\)
ta có: \(\frac{BK}{BA}+\frac{CE}{CA}\)
\(=\frac{BI}{BC}+\frac{CI}{BC}=\frac{BC}{BC}=1\)
2: Qua M, kẻ MG//IE(G∈AC)
=>DE//MG
Xét ΔAMG có DE//MG
nên \(\frac{AE}{AG}=\frac{DE}{MG}\)
=>\(\frac{DE}{AE}=\frac{MG}{AG}\)
ta có: MG//IE
IE//AB
Do đó: MG//AB
Xét ΔABC có
M là trung điểm của BC
MG//AB
Do đó: G là trung điểm của AC
=>GA=GC
=>\(\frac{DE}{AE}=\frac{MG}{AG}=\frac{MG}{CG}\)
Xét ΔCAB có MG//AB
nên \(\frac{MG}{AB}=\frac{CG}{AC}\)
=>\(\frac{MG}{CG}=\frac{AB}{AC}\)
=>\(\frac{DE}{AE}=\frac{AB}{AC}\)
c:
Xét tứ giác AKIE có
AK//IE
AE//KI
Do đó: AKIE là hình bình hành
=>KI=AE: AK=IE
Xét ΔBAC có KI//AC
nên \(\frac{BK}{BA}=\frac{KI}{AC}\)
=>\(\frac{BK}{KI}=\frac{AB}{AC}\)
=>\(\frac{DE}{AE}=\frac{BK}{KI}\)
mà AE=KI
nên DE=BK

`a^3+b^3+c^3=3abc`
`=>a^3+b^3+c^3-3abc=0`
`=>(a+b)^3-3ab(a+b)-3abc+c^3=0`
`=>(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0`
`=>(a+b+c)(a^2+b^2+c^2-ac-bc+c^2-3ab)=0`
`=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`TH1:a+b+c=0`
`=>a+b=-c`
`=>a^2+2ab+b^2=c^2`
`=>a^2+b^2-c^2=-2ab`
Tương tự ta được: `a^2+c^2-b^2=-2ac;b^2+c^2-a^2=-2bc`
`=>D=(ab^2)/(-2ab)+(bc^2)/(-2bc)+(ca^2)/(-2ac)`
`=-(a+b+c)/2=0`
`TH2:a^2+b^2+c^2-ac-ab-bc=0`
`=>2a^2+2b^2+2c^2-2ac-2ab-2bc=0`
`=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`=>{(a-b=0),(b-c=0),(c-a=0):}` (vô lý)
Vậy: `D=0`
Bài 1:Sửa đề: \(\hat{B}-\hat{C}=30^0\)
Ta có: ABCD là hình thang
=>AB//CD
=>\(\hat{A}+\hat{D}=180^0\)
=>\(3\cdot\hat{D}+\hat{D}=180^0\)
=>\(4\cdot\hat{D}=180^0\)
=>\(\hat{D}=\frac{180^0}{4}=45^0\)
\(\hat{A}=3\cdot\hat{D}=3\cdot45^0=135^0\)
Ta có: AB//CD
=>\(\hat{B}+\hat{C}=180^0\)
mà \(\hat{B}-\hat{C}=30^0\)
nên \(\hat{B}=\frac{180^0+30^0}{2}=105^0;\hat{C}=105^0-30^0=75^0\)
Bài 3:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\hat{HAB}\) chung
Do đó: ΔAHB=ΔAKC
=>AH=AK và BH=CK
Xét ΔABC có \(\frac{AK}{AB}=\frac{AH}{AC}\)
nên KH//BC
Xét tứ giác BKHC có KH//BC và KC=BH
nên BKHC là hình thang cân
Bài 4:Sửa đề: Bỏ câu AC cắt BD tại O
b: Xét ΔABD và ΔBAC có
AB chung
BD=AC
AD=BC
Do đó: ΔABD=ΔBAC
=>\(\hat{ABD}=\hat{BAC}\)
=>\(\hat{IAB}=\hat{IBA}\)
=>IA=IB
c:
Xét ΔODC có \(\hat{ODC}=\hat{OCD}\)
nên ΔOCD cân tại O
=>OD=OC
=>O nằm trên đường trung trực của DC(1)
Ta có: IA+IC=AC
IB+ID=BD
mà IA=IB và AC=BD
nên IC=ID
=>I nằm trên đường trung trực của DC(2)
Từ (1),(2) suy ra OI là đường trung trực của DC
Ta có: OA+AD=OD
OB+BC=OC
mà AD=BC và OC=OD
nên OA=OB
=>O nằm trên đường trung trực của AB(3)
Ta có: IA=IB
=>I nằm trên đường trung trực của AB(4)
Từ (3),(4) suy ra OI là đường trung trực của AB