K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 giờ trước (15:41)

a: Qua B, kẻ đường thẳng MN đi qua B và song song với Ax và Cy, với tia BM và tia Ax nằm trên cùng một nửa mặt phẳng bờ chứa tia AB

BM//Ax

=>\(\hat{xAB}+\hat{ABM}=180^0\) (hai góc trong cùng phía)

=>\(\hat{xAB}=180^0-\hat{ABM}\)

BN//Cy

=>\(\hat{yCB}+\hat{BCN}=180^0\) (hai góc trong cùng phía)

=>\(\hat{yCB}=180^0-\hat{BCN}\)

Ta có: \(\hat{MBA}+\hat{ABC}+\hat{CBN}=180^0\)

=>\(\hat{ABC}=180^0-\hat{ABM}-\hat{CBN}\)

\(=180^0-\left(180^0-\hat{xAB}\right)-\left(180^0-\hat{yCB}\right)=\hat{xAB}-180^0+\hat{yCB}\)

=>\(\hat{xAB}+\hat{yCB}-\hat{ABC}=180^0\)

b: Qua B, kẻ đường thẳng MN đi qua B và song song với Ax, với tia BM và tia Ax nằm trên cùng một nửa mặt phẳng bờ chứa tia AB

BM//Ax

=>\(\hat{xAB}+\hat{ABM}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABM}=180^0-\hat{xAB}\)

Ta có: \(\hat{BCy}+\hat{BAx}-\hat{ABC}=180^0\)

=>\(\hat{ABC}=\hat{BCy}+\hat{BAx}-180^0\)

Ta có: \(\hat{ABM}+\hat{ABC}+\hat{CBN}=180^0\)

=>\(180^0-\hat{xAB}+\hat{BCy}+\hat{BAx}-180^0+\hat{CBN}=180^0\)

=>\(\hat{BCy}+\hat{CBN}=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên Cy//BN

ta có: Cy//BN

Ax//BN

Do đó: Cy//Ax

20 giờ trước (13:57)

20 giờ trước (14:03)

22 giờ trước (12:42)

Giúp mình câu d

19 giờ trước (15:33)

d: ĐKXĐ: x>=2

Ta có: \(\left(3\sqrt{x-2}+2\right)\left(\sqrt{x-1}+x\right)=0\)

\(3\sqrt{x-2}+2\ge2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x-1}=x\)

=>\(\begin{cases}x-1=x^2\\ x\ge0\end{cases}\Rightarrow\begin{cases}x^2-x+1=0\\ x\ge2\end{cases}\)

=>\(\begin{cases}x^2-x+\frac14+\frac34=0\\ x\ge2\end{cases}\Rightarrow\begin{cases}\left(x-\frac12\right)^2+\frac34=0\left(vôlý\right)\\ x\ge2\end{cases}\)

=>x∈∅

19 tháng 8

Ta có:

\(\hat{Q_3}\) = \(\hat{Q_1}\)(đối đỉnh)

\(\hat{Q}_1\) = \(\hat{P_1}\) (tính chất bác cầu) (1)

Hai góc \(Q_1\)\(P_1\) ở vị trí đồng vị (2)

Từ 1 và (2) ta có:

m//n (đpcm)


19 tháng 8

Giải:

a; m ⊥ d; n ⊥ d

⇒ m//n (hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song với nhau)

b; Điểm B trên hình đâu em?



19 tháng 8

Giải:

a; \(\hat{x^{\prime}AB}\) = \(\hat{ABy}\) = 70\(^0\)(gt) (1)

\(\hat{x^{\prime}AB}\)\(\hat{ABy}\) (hai góc so le trong) (2)

Kết hợp (1) và (2) ta có:

\(xx^{\prime}\) // yy'

b; \(xx^{\prime}\) // yy' (cmt) (a)

mm' ⊥ \(x\)\(x^{\prime}\)(gt) (b)

Từ (a) và (b) ta có:

mm'⊥ yy' (tính chất từ vuông góc đến song song)

\(\hat{yDm^{\prime}}\) = 90\(^0\)




a: Ta có: tia CA nằm giữa hai tia CB và CD

=>\(\hat{BCD}=\hat{BCA}+\hat{ACD}=80^0+30^0=110^0\)

Ta có: \(\hat{DCB}+\hat{B}=110^0+70^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên AB//CD

b: ta có: AB//CD
=>\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong)

=>\(\hat{BAC}=80^0\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}=\frac{a+b-c+a+c-b+b+c-a}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

=>\(\begin{cases}a+b-c=c\\ a+c-b=b\\ b+c-a=a\end{cases}\Rightarrow\begin{cases}a+b=2c\\ a+c=2b\\ b+c=2a\end{cases}\)

\(A=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)

a: Ta có: tia CA nằm giữa hai tia CB và CD

=>\(\hat{BCD}=\hat{BCA}+\hat{DCA}=80^0+30^0=110^0\)

ta có: \(\hat{BCD}+\hat{CBA}=110^0+70^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên AB//CD

b: AB//CD

=>\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong)

=>\(\hat{BAC}=80^0\)

a, ta có A= 180 độ -70 độ -30 độ = 80 độ ( tổng 3 góc trong 1 tam giác = 180 độ )

mà AB=CD=80 độ nên AB//CD ( vì song song nên bằng nhau ) 1

b, góc BAC = 80 độ (1)