loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 1 2024

a.

\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)

\(=\dfrac{x^2+3x+1}{x+1}\)

2.

\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)

Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)

30 tháng 1 2024

4.linda sometimes brings her home made after the class

30 tháng 1 2024

Linh 6A3(THCS Mai Đình) à

 

 

14 giờ trước (11:32)

14:

a: \(\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}=\frac{7x^2-22x+3}{2x\left(x+3\right)\left(x-3\right)}\)

\(\frac{5-3x}{x^2-9}=\frac{2x\left(5-3x\right)}{2x\left(x-3\right)\left(x+3\right)}=\frac{10x-6x^2}{2x\left(x-3\right)\left(x+3\right)}\)

b: \(\frac{x+1}{x-x^2}=\frac{-\left(x+1\right)}{x^2-x}=\frac{-\left(x+1\right)}{x\left(x-1\right)}=\frac{-\left(x+1\right)\cdot2\left(x-1\right)}{2x\left(x-1\right)^2}=\frac{-2x^2+2}{2x\left(x-1\right)^2}\)

\(\frac{x+2}{2x^2-4x+2}=\frac{x+2}{2\left(x^2-2x+1\right)}=\frac{x+2}{2\left(x-1\right)^2}=\frac{x\left(x+2\right)}{2x\left(x-1\right)^2}=\frac{x^2+2x}{2x\left(x-1\right)^2}\)

c: \(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\cdot\left(x^2+x+1\right)}\)

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{6x^2+6x+6}{\left(x-1\right)\left(x_{}^2+x+1\right)}\)

d: \(\frac{7}{5x}=\frac{7\cdot2\cdot\left(x-2y\right)\left(x+2y\right)}{5x\cdot2\cdot\left(x-2y\right)\left(x+2y\right)}=\frac{14\left(x^2-4y^2\right)}{10x\left(x-2y\right)\left(x+2y\right)}=\frac{14x^2-56y^2}{10x\left(x-2y\right)\left(x+2y\right)}\)

\(\frac{4}{x-2y}=\frac{4\cdot5x\cdot2\cdot\left(x+2y\right)}{\left(x-2y\right)\cdot5x\cdot2\cdot\left(x+2y\right)}=\frac{40x\left(x+2y\right)}{10x\left(x-2y\right)\left(x+2y\right)}=\frac{40x^2+80xy}{10x\left(x-2y\right)\left(x+2y\right)}\)

\(\frac{y-x}{8y^2-2x^2}=\frac{x-y}{2x^2-8y^2}=\frac{x-y}{2\left(x-2y\right)\left(x+2y\right)}=\frac{5x\left(x-y\right)}{2\cdot5x\left(x-2y\right)\left(x+2y\right)}=\frac{5x^2-5xy}{10x\left(x-2y\right)\left(x+2y\right)}\)

e: \(\frac{5x^2}{x^3+6x^2+12x+8}=\frac{5x^2}{\left(x+2\right)^3}=\frac{5x^2\cdot2}{2\left(x+2\right)^3}=\frac{10x^2}{2\left(x+2\right)^3}\)

\(\frac{4x}{x^2+4x+4}=\frac{4x}{\left(x+2\right)^2}=\frac{4x\cdot2\cdot\left(x+2\right)}{2\left(x+2\right)^3}=\frac{8x^2+16x}{2\left(x+2\right)^3}\)

\(\frac{3}{2x+4}=\frac{3}{2\left(x+2\right)}=\frac{3\left(x+2\right)^2}{2\left(x+2\right)^3}=\frac{3\left(x^2+4x+4\right)}{2\left(x+2\right)^3}=\frac{3x^2+12x+12}{2\left(x+2\right)^3}\)

13:

a: \(\frac{25}{14x^2y}=\frac{25\cdot3\cdot y^4}{14x^2y\cdot3y^4}=\frac{75y^4}{45x^2y^5}\)

\(\frac{14}{21xy^5}=\frac{14\cdot2\cdot x}{2x\cdot21xy^5}=\frac{28x}{42x^2y^5}\)

b: \(\frac{11}{102x^4y}=\frac{11\cdot y^2}{102x^4y\cdot y^2}=\frac{11y^2}{102x^4y^3}\)

\(\frac{3}{34xy^3}=\frac{3\cdot x^3\cdot3}{34xy^3\cdot3x^3}=\frac{9x^3}{102x^4y^3}\)

c: \(\frac{3x+1}{12xy^4}=\frac{\left(3x+1\right)\cdot3\cdot x}{12xy^4\cdot3x}=\frac{9x^2+3x}{36x^2y^4}\)

\(\frac{y-2}{9x^2y^3}=\frac{\left(y-2\right)\cdot4\cdot y}{9x^2y^3\cdot4y}=\frac{4y^2-8y}{36x^2y^4}\)

d: \(\frac{1}{6x^3y^2}=\frac{1\cdot6\cdot xy^2}{6x^3y^2\cdot6xy^2}=\frac{6xy^2}{36x^4y^4}\)

\(\frac{x+1}{9x^2y^4}=\frac{\left(x+1\right)\cdot4\cdot x^2}{9x^2y^4\cdot4x^2}=\frac{4x^3+4x^2}{36x^4y^4}\)

\(\frac{x-1}{4xy^3}=\frac{\left(x-1\right)\cdot9\cdot x^3y}{4xy^3\cdot9x^3y}=\frac{9x^4y-9x^3y}{36x^4y^4}\)

e: \(\frac{3+2x}{10x^4y}=\frac{\left(2x+3\right)\cdot4y^4}{10x^4y\cdot4y^4}=\frac{8xy^4+12y^4}{40x^4y^5}=\frac{3\left(8xy^4+12y^4\right)}{3\cdot40x^4y^4}=\frac{24xy^4+36y^4}{120x^4y^4}\)

\(\frac{5}{8x^2y^2}=\frac{5\cdot5\cdot x^2y^3}{8x^2y^2\cdot5x^2y^3}=\frac{25x^2y^3}{40x^4y^5}=\frac{25x^2y^3\cdot3}{40x^4y^5\cdot3}=\frac{75x^2y^3}{120x^4y^5}\)

\(\frac{2}{3xy^5}=\frac{2\cdot40\cdot x^3}{3xy^5\cdot40x^3}=\frac{80x^3}{120x^4y^5}\)

f: \(\frac{4x-4}{2x\left(x+3\right)}=\frac{2\cdot\left(x-1\right)}{2x\cdot\left(x+3\right)}=\frac{x-1}{x\left(x+3\right)}=\frac{\left(x-1\right)\cdot3\left(x+1\right)}{3x\left(x+3\right)\left(x+1\right)}=\frac{3x^2-3}{3x\left(x+3\right)\left(x+1\right)}\)

\(\frac{x-3}{3x\left(x+1\right)}=\frac{\left(x-3\right)\left(x+3\right)}{3x\left(x+1\right)\left(x+3\right)}=\frac{x^2-9}{3x\left(x+1\right)\left(x+3\right)}\)

g: \(\frac{2x}{\left(x+2\right)^3}=\frac{2x\cdot2x}{2x\left(x+2\right)^3}=\frac{4x^2}{2x\left(x+2\right)^3}\)

\(\frac{x-2}{2x\left(x+2\right)^2}=\frac{\left(x-2\right)\left(x+2\right)}{2x\left(x+2\right)^2\cdot\left(x+2\right)}=\frac{x^2-4}{2x\left(x+2\right)^3}\)

h: \(\frac{5}{3x^3-12x}=\frac{5}{3x\left(x^2-4\right)}=\frac{5}{3x\left(x-2\right)\left(x+2\right)}=\frac{5\cdot2\left(x+3\right)}{3x\left(x-2\right)\left(x+2\right)\cdot2\left(x+3\right)}=\frac{10x+30}{6x\left(x-2\right)\left(x+2\right)\left(x+3\right)}\)

\(\frac{3}{\left(2x+4\right)\left(x+3\right)}=\frac{3}{2\left(x+2\right)\left(x+3\right)}=\frac{3\cdot3x\left(x-2\right)}{2\left(x+2\right)\left(x+3\right)\cdot3x\left(x-2\right)}=\frac{9x^2-18x}{6x\left(x-2\right)\left(x+2\right)\left(x+3\right)}\)

Bài 38:

Xét ΔABD và ΔACB có

\(\frac{AB}{AC}=\frac{AD}{AB}\left(\frac{10}{20}=\frac{5}{10}=\frac12\right)\)

góc BAD chung

Do đó: ΔABD~ΔACB

=>\(\hat{ABD}=\hat{ACB}\)

Bài 36:

Xét ΔABD và ΔBDC có

\(\frac{AB}{BD}=\frac{BD}{DC}\left(\frac48=\frac{8}{16}=\frac12\right)\)

\(\hat{ABD}=\hat{BDC}\) (hai góc so le trong, AB//CD)

Do đó: ΔABD~ΔBDC

=>\(\hat{BAD}=\hat{DBC}\)

ΔABD~ΔBDC

=>\(\frac{AD}{BC}=\frac{AB}{BD}=\frac48=\frac12\)

=>BC=2AD

35:

Xét ΔAMN và ΔACB có

\(\frac{AM}{AC}=\frac{AN}{AB}\left(\frac{10}{15}=\frac{8}{12}=\frac23\right)\)

góc MAN chung

Do đó: ΔAMN~ΔACB

=>\(\frac{MN}{CB}=\frac{AM}{AC}=\frac23\)

=>\(MN=18\cdot\frac23=12\left(\operatorname{cm}\right)\)

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Bài 4:

a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:

$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$

$\frac{DB}{DC}=\frac{D'B'}{D'C}$

$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$

$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$

Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$

Xét tam giác $ABD$ và $A'B'D'$ có:

$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$

$\frac{AB}{A'B'}=\frac{BD}{B'D'}$

$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)

b.

Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$

$\Rightarrow AD.B'C'=BC.A'D'$

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Hình bài 4:

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Bạn cần hỗ trợ bài nào nhỉ?

NV
16 tháng 1 2024

ĐKXĐ: \(\left|x-2\right|-1\ne0\)

\(\Rightarrow\left|x-2\right|\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}x-2\ne1\\x-2\ne-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)