K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 giờ trước (16:12)

a) Tìm \(M\) để đồ thị hàm số \(y = \left(\right. m + 1 \left.\right) x^{2}\) đi qua điểm \(A \left(\right. 2 , 4 \left.\right)\):

Để hàm số \(y = \left(\right. m + 1 \left.\right) x^{2}\) đi qua điểm \(A \left(\right. 2 , 4 \left.\right)\), ta thay giá trị \(x = 2\)\(y = 4\) vào phương trình hàm số:

\(y = \left(\right. m + 1 \left.\right) x^{2}\)

Thay \(x = 2\)\(y = 4\):

\(4 = \left(\right. m + 1 \left.\right) \cdot 2^{2}\) \(4 = \left(\right. m + 1 \left.\right) \cdot 4\) \(4 = 4 \left(\right. m + 1 \left.\right)\)

Chia cả hai vế cho 4:

\(1 = m + 1\) \(m = 0\)

Vậy giá trị của \(m\)0.

like minh nhe minh lam duoc cau a thôi

10 giờ trước (16:57)

Để giải bài toán này, chúng ta sẽ thực hiện từng bước một.

a) Tìm \(m\) để đồ thị hàm số đi qua điểm \(A \left(\right. 2 , 4 \left.\right)\)

  1. Thay tọa độ điểm A vào hàm số:
    Hàm số cho trước là: \(y = \left(\right. m + 1 \left.\right) x^{2}\)Thay \(x = 2\)\(y = 4\): \(4 = \left(\right. m + 1 \left.\right) \left(\right. 2^{2} \left.\right)\)
  2. Giải phương trình:
    Tính giá trị \(2^{2}\): \(2^{2} = 4 \Rightarrow 4 = \left(\right. m + 1 \left.\right) \cdot 4\)Chia cả hai vế cho 4: \(1 = m + 1\)Trừ 1 từ cả hai vế: \(m = 0\)

Kết luận phần a:

  • Giá trị của \(m\) là \(0\).

b) Vẽ đồ thị hàm số \(y = \left(\right. m + 1 \left.\right) x^{2}\) với giá trị \(m\) vừa tìm được

  1. Thay giá trị \(m\) vào hàm số:
    Với \(m = 0\): \(y = \left(\right. 0 + 1 \left.\right) x^{2} = x^{2}\)
  2. Xác định các điểm trên đồ thị:
    • Khi \(x = - 2\)\(y = \left(\right. - 2 \left.\right)^{2} = 4\)
    • Khi \(x = - 1\)\(y = \left(\right. - 1 \left.\right)^{2} = 1\)
    • Khi \(x = 0\)\(y = 0^{2} = 0\)
    • Khi \(x = 1\)\(y = 1^{2} = 1\)
    • Khi \(x = 2\)\(y = 2^{2} = 4\)
  3. Vẽ đồ thị:
    Đồ thị của hàm số \(y = x^{2}\) là một parabol mở lên trên. Các điểm mà chúng ta đã tính sẽ giúp hình dung đồ thị:
    • Điểm \(\left(\right. - 2 , 4 \left.\right)\)
    • Điểm \(\left(\right. - 1 , 1 \left.\right)\)
    • Điểm \(\left(\right. 0 , 0 \left.\right)\)
    • Điểm \(\left(\right. 1 , 1 \left.\right)\)
    • Điểm \(\left(\right. 2 , 4 \left.\right)\)

Kết luận phần b:

  • Đồ thị của hàm số \(y = x^{2}\) là một parabol mở lên với đỉnh tại điểm \(\left(\right. 0 , 0 \left.\right)\).

Nếu bạn cần thêm thông tin hoặc có câu hỏi gì khác, hãy cho tôi biết!

19 giờ trước (7:28)

Bài thơ "Đất nước" của Nguyễn Đình Thi thể hiện tình yêu sâu sắc đối với quê hương, đất nước qua hình ảnh những cảnh vật gần gũi, quen thuộc. Bài thơ bắt đầu bằng sự liên tưởng đến hình ảnh đất nước qua những chi tiết bình dị như dòng sông, cây cối, và cánh đồng, phản ánh sự gắn bó mật thiết giữa con người và thiên nhiên. Nguyễn Đình Thi không chỉ miêu tả vẻ đẹp tự nhiên mà còn khắc họa quá trình hình thành, phát triển của đất nước, từ những ngày đầu dựng nước cho đến những cuộc chiến đấu bảo vệ tổ quốc.

Bài thơ không chỉ ca ngợi vẻ đẹp vật chất của đất nước mà còn khắc sâu tình yêu, lòng tự hào dân tộc. Từ đó, "Đất nước" trở thành lời khẳng định về sự trường tồn của dân tộc, sức mạnh đoàn kết của nhân dân trong lịch sử và hiện tại. Với ngôn từ giản dị nhưng sâu sắc, bài thơ mang đến một thông điệp mạnh mẽ về tình yêu và trách nhiệm của mỗi người đối với đất nước.
like cho minh nhe


Gọi H là giao điểm của BC và AD

D đối xứng A qua BC

=>BC\(\perp\)AD tại H và H là trung điểm của AD

Xét ΔBAD có

BH là đường cao

BH là đường trung tuyến
Do đó: ΔBAD cân tại B

=>BA=BD

Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

DO đó: ΔCAD cân tại C

=>CA=CD

Xét ΔBAC và ΔBDC có

BA=BD

CA=CD

BC chung

Do đó: ΔBAC=ΔBDC

=>\(\widehat{BAC}=\widehat{BDC}=90^0\)

=>ABDC là tứ giác nội tiếp

18 tháng 2

bàu 1 : gọi v2 (km/h) là vận tốc của xe thứ hai (đk: v1 > v2 > 0)
vận tốc xe 1 sẽ là v1 = v2 + 10 (km/h)

thời gian xe 1 đi từ A -> B: \(t_1=\dfrac{200}{v_1}=\dfrac{200}{v_2+10}\left(h\right)\)

thời gian xe 2 đi từ A -> B: \(t_2=\dfrac{200}{v_2}\left(h\right)\)

theo đề bài, xe thứ nhất đến sớm hơn 1 giờ  nên:

\(t_2-t_1=1\Leftrightarrow\dfrac{200}{v_2}-\dfrac{200}{v_2+10}=1\\ =>200\left(v_2+10\right)-200v_2=v_2\left(v_2+10\right)\\ =>200v_2+2000-200v_2=v_2^2+10v_2\\ =>2000=v_2^2+10v_2\\ =>v_2^2+10v_2-2000=0\\ =>\left[{}\begin{matrix}v_2=40\left(km.h\right)\left(TM\right)\\v_2=-50\left(km.h\right)\left(KTM\right)\end{matrix}\right.\)

\(v_1=v_2+10=40+10=50\left(km.h\right)\)

vậy vận tốc xe 1 là 50km/h; vận tốc xe 2 là 40km/h

18 tháng 2

bài 2: gọi \(t_d\text{ là thời gian dự tính; }t_t\text{ là thời gian thực tế}\) 

thời gian người đó dự định đi hết quãng đường là: 

\(t_d=\dfrac{90}{v}\left(h\right)\)

1/2 quãng đường là: \(90\cdot\dfrac{1}{2}=45\left(km\right)\)

quãng đường đầu tiên người đó đi: \(t_1=\dfrac{45}{v}\left(h\right)\)

quãng đường còn lại người đó đi: \(t_2=\dfrac{45}{v-10}\left(h\right)\)

thời gian thực tế người đó đi là: \(t_t=\dfrac{45}{v}+\dfrac{45}{v-10}\left(h\right)\)

mà \(t_t=t_d+\dfrac{18}{60}\)

\(=>\dfrac{45}{v}+\dfrac{45}{v-10}=\dfrac{90}{v}+0,3\\ =>\dfrac{45}{v-10}-\dfrac{45}{v}=0,3\\ 45v-45\left(v-10\right)=0,3v\left(v-10\right)\\ 45v-45v+450=0,3v^2-3v\\ =>0,3v^2-3v-450=0\\ < =>v^2-10v-1500=0\\ =>\left[{}\begin{matrix}v\approx44\left(km.h\right)\left(TM\right)\\v\approx-34\left(km.h\right)\left(KTM\right)\end{matrix}\right.\)

thời gian thực tế người đó đi là: 

\(t_t=\dfrac{45}{44}+\dfrac{45}{44-10}\approx2,34\left(h\right)=2h20p\)

vậy vận tốc dự đinh là 44km/hl thời gian đi là 2h20p

Gọi vận tốc của cano lúc nước yên lặng là x(km/h)

(Điều kiện: x>4)

vận tốc lúc xuôi dòng là x+4(km/h)

Vận tốc lúc ngược dòng là x-4(km/h)

Thời gian đi xuôi dòng là \(\dfrac{30}{x+4}\left(giờ\right)\)

Thời gian đi ngược dòng là \(\dfrac{30}{x-4}\left(giờ\right)\)

Tổng thời gian cả đi lẫn về là 4 giờ nên ta có:

\(\dfrac{30}{x+4}+\dfrac{30}{x-4}=4\)

=>\(\dfrac{30\left(x-4\right)+30\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=4\)

=>\(4\left(x^2-16\right)=60x\)

=>\(x^2-16=15x\)

=>\(x^2-15x-16=0\)

=>(x-16)(x+1)=0

=>\(\left[{}\begin{matrix}x-16=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Vậy: Vận tốc của cano lúc nước yên lặng là 16km/h

a: Khi x=16 thì \(B=\dfrac{4+3}{4-3}=\dfrac{7}{1}=7\)

b: \(A=\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+9}{x-9}-\dfrac{1}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}-3+\sqrt{x}+9-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2\sqrt{x}+6-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{1}{\sqrt{x}-3}\)

 

18 tháng 2

Lenin sinh ngày 22 tháng 4 năm 1870 (theo lịch Gregory) và mất ngày 21 tháng 1 năm 1924.