Nếu phép vị tự tâm A tỉ số \(k\) biến B thành C thì phép vị tự tâm B biến A thành C có tỉ số:
A. \(-k\)
B. \(\frac{1}{k}\)
C. \(1-k\)
D. \(k\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`16x^4-16x^2+1=0`
`<=>16(x^2)^2-16x^2+1=0`
Đặt: `t=x^2` với `t>=0`
Ta được phương trình: `16t^2-16t+1=0`
`\Delta=(-16)^2-4*16*1=192>0`
Có hai nghiệm phân biệt:
`t_1=(-(-16)+\sqrt{192})/(2*16)=(2+\sqrt{3})/4(tm)`
`t_2=(-(-16)+\sqrt{192})/(2*16)=(2-\sqrt{3})/4(tm)`
Với `t=(2+\sqrt{3})/4=(4+2\sqrt{3})/8`
Suy ra: `x^2=(4+2\sqrt{3})/8`
`<=>x=+-\sqrt{(4+2\sqrt{3})/8}`
`<=>x=+-\sqrt{(\sqrt{3}+1)^2/8}`
`<=>x=+-(\sqrt{3}+1)/(2\sqrt{2})`
Với `t=(2-\sqrt{3})/4=(4-2\sqrt{3})/8`
Suy ra: `x^2=(4-2\sqrt{3})/8`
`<=>x=+-\sqrt{(4-2\sqrt{3})/8}`
`<=>x=+-\sqrt{(\sqrt{3}-1)^2/8}`
`<=>x=+-(\sqrt{3}-1)/(2\sqrt{2})`
Vậy: `...`
Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!
Tại điểm \(x=x_0\) bất kì, ta có:
\(f'\left(x_0\right)=\lim\limits_{x\rightarrow x_0}\dfrac{f\left(x\right)-f\left(x_0\right)}{x-x_0}=\lim\limits_{x\rightarrow x_0}\dfrac{-6x^2+9x-2-\left(-6x_0^2+9x_0-2\right)}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x_0}\dfrac{-6x^2+6x_0^2+9x-9x_0}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x_0}\dfrac{-6.\left(x^2-x_0^2\right)+9\left(x-x_0\right)}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x_0}\dfrac{-6\left(x-x_0\right)\left(x+x_0\right)+9\left(x-x_0\right)}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x_0}\dfrac{\left(x-x_0\right)\left[-6\left(x+x_0\right)+9\right]}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x_0}\left[-6\left(x+x_0\right)+9\right]\)
\(=-6.\left(x_0+x_0\right)+9\)
\(=-12x_0+9\)
Vậy \(f'\left(x\right)=-12x+9\)
Gọi \(\Delta x,\Delta y\) lần lượt là số gia của biến \(x\) và \(y\) .
Đặt \(x=x_0\in R\). Khi đó \(f\left(x_0+\Delta x\right)=-6\left(x_0+\Delta x\right)^2+9\left(x_0+\Delta x\right)-2\)
\(=-6x_0^2+9x_0-2-6\left(\Delta x_0\right)^2-12x_0\Delta x+9\Delta x\)
\(\rArr\Delta y=f\left(x_0+\Delta x\right)-f\left(x_0\right)\)
\(=-6\left(\Delta x\right)^2-12x_0\Delta x+9\Delta x\)
Ta có \(f^{\prime}\left(x_0\right)=\lim_{\Delta x\rarr0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\rarr0}\left(\frac{-6\left(\Delta x\right)^2-12x_0\Delta x+9\Delta x}{\Delta x}\right)\)
\(=\lim_{\Delta x\rarr0}\left(-6\Delta x-12x_0+9\right)\)
\(=-12x_0+9\)
Như vậy \(f^{\prime}\left(x\right)=-12x+9\)
Gọi O là tâm của đáy ABCD
ABCD là hình vuông
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Ta có: BD⊥AC(ABCD là hình vuông)
BD⊥SA(SA⊥(ABCD))
SA,AC cùng thuộc mp(SAC)
Do đó: BD⊥(SAC)
=>BD⊥SO
(SBD) cắt (ABCD)=BD
SO⊥BD; SO⊂(SBD)
AC⊥BD; AC⊂(ABCD)
Do đó: góc giữa hai mp(SBD) và (ABCD) là góc giữa SO và AC
ΔSAO vuông tại A
=>\(\hat{SOA}<90^0\)
=>Góc giữa hai mp (SBD) và (ABCD) là \(\hat{SOA}\)
ABCD là hình vuông
=>\(CA^2=BA^2+BC^2=a^2+a^2=2a^2\)
=>\(CA=a\sqrt2\)
O là trung điểm của AC
=>\(AO=\frac{CA}{2}=\frac{a\sqrt2}{2}\)
Xét ΔSAO vuông tại A có \(\tan SOA=\frac{SA}{AO}=a:\frac{a\sqrt2}{2}=\frac{2}{\sqrt2}=\sqrt2\)
nên \(\hat{SOA}\) ≃55 độ
=>Góc giữa hai mp(SBD) và (ABCD) gần bằng 55 độ
Phép vị tự tâm A tỉ số k biến B thành C
=>\(\overrightarrow{AC}=k\cdot\overrightarrow{AB}\)
\(\overrightarrow{BC}=\overrightarrow{BA}+\overrightarrow{AC}=\overrightarrow{BA}+k\cdot\overrightarrow{AB}=\overrightarrow{BA}-k\cdot\overrightarrow{BA}=\overrightarrow{BA}\cdot\left(1-k\right)\)
=>Phép vị tự tâm B biến A thành C với tỉ số là 1-k
=>Chọn C