khó trình bày quá
(y phần 3-5)^2000=(y phần 3 - 5)^2008
bài cuối ròi ;-;
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-10\right)\left(3x-36\right)=0\)
2x-10=0 hoặc 3x-36=0
2x=10 hoặc 3x=36
x=10:2 hoặc x=36:3
x=5 hoặc x=12
Cần 1.9=9 chữ số để đánh số các ghế từ 1 tới 9
Cần 2.(99-10+1)=180 chữ số để đánh số các ghế từ 10 tới 99
Cần 3.(980-100+1)=2643 chữ số để đánh số các ghế từ 100 tới 980
Vậy cần tộng cộng số chữ số là:
9+180+2643=2832
CỘT 1: 4a 5b 6a 7b 8b
CỘT 2:
3. where is she from
4. how old are they
5. has he got a computer
6. have we got any milk
7. can you ride a bike
8. can they sing
Phần trái:
4. A
5. B
6. A
7. B
8. A
Phần phải:
3. Where is she from?
4. How old are they?
5. Has he got a computer?
6. Have we got any milk?
7.Can you ride a bike?
8. Can they sing?
xu để bạn có thể đổi quà trong olm, mua thẻ cào, ... hoặc tặng bạn bè
bạn có thể kiếm xu bằng cách tích cực trả lời hỏi đáp (với điều kiện là câu trả lời phải chất lượng), khi được tick đúng, bạn có tên trong bảng xếp hạng, nếu đứng nhất hàng tuần hàng tháng bạn sẽ được nhận xu
ngoài ra bạn có thể tham gia cuộc thi để nhận xu: https://olm.vn/cuoc-thi
Olm chào em, với câu hỏi này olm xin hỗ trợ như sau: Khi em tham gia diễn đàn Olm, các em tích cực hỗ trợ các bạn trên diễn đàn hỏi đáp. Mỗi câu trả lời em sẽ được các bạn tích đúng và em được 1 sp. Và nếu câu trả lời của em chất lượng, trình bày khoa học, phù hợp với trình độ người hỏi em sẽ được ctv vip, amin, giáo viên tích đúng và em nhận được 1gp. Cuối tuần sẽ có bảng xếp hạng, căn cứ vào bảng xếp hạng Olm sẽ trao thưởng xu cho em. Em cũng có thể tham gia các cuộc thi vui, các sự kiện của Olm giành giải thưởng là xu hoặc coin, tham gia thi đấu.. Em có thể dùng xu để đổi quà trên Olm đó là bút, sổ, áo, mũ, thẻ cào điện thoại. Cảm ơn em đã đồng hành cùng olm.
1- girls
2- teacher
3- window
4- desks
5- dark
6- bored
7- o'clock
8- hungry
1. girls
2. teacher
3. window
4. desks
5. dark
6. bored
7. o’clock
8. hungry
\(2n^2\left(n+1\right)+n\left(n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n+2\right)\)
=n(n+1)(n-1)+n(n+1)(n+2)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên n(n-1)(n+1)⋮3!=6(1)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên n(n+1)(n+2)⋮3!=6(2)
Từ (1),(2) suy ra n(n+1)(n-1)+n(n+1)(n+2)⋮6
=>\(2n^2\left(n+1\right)+n\left(n+1\right)\) ⋮6
Để chứng minh rằng biểu thức \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 6 với \(n \in \mathbb{Z}\), ta cần chứng minh rằng biểu thức này chia hết cho 2 và 3, vì một số chia hết cho 6 khi và chỉ khi nó chia hết cho cả 2 và 3.
Ta cần chứng minh rằng \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 2.
Xét biểu thức:
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\)
Chia nó thành hai phần:
Do đó, cả hai phần của biểu thức đều chia hết cho 2, nên tổng \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 2.
Tiếp theo, ta cần chứng minh rằng \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 3.
Xét biểu thức:
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\)
Ta sẽ xét các trường hợp với \(n m o d \textrm{ } \textrm{ } 3\) (tức là \(n\) chia cho 3 có dư 0, 1 hoặc 2).
Vì biểu thức \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho cả 2 và 3, nên nó chia hết cho 6 với mọi \(n \in \mathbb{Z}\).
\(\left(\frac{y}{3}-5\right)^{2000}=\left(\frac{y}{3}-5\right)^{2008}\)
\(\frac{y}{3}-5=0\) hoặc \(\frac{y}{3}-5=1\) hoặc \(\frac{y}{3}-5=-1\)
\(\frac{y}{3}=5\) hoặc \(\frac{y}{3}=6\) hoặc \(\frac{y}{3}=4\)
y=15 hoặc y=18 hoặc y=12
(\(\frac{y}{3}\) - 5)\(^{2000}\) = (\(\frac{y}{3}\) - 5)\(^{2008}\)
(\(\frac{y}{3}\) - 5)\(^{2000}\) - (\(\frac{y}{3}\) - 5)\(^{2008}\) = 0
(\(\frac{y}{3}\) - 5)\(^{2000}\).[1 - (\(\frac{y}{3}\) - 5)\(^8\)] = 0
\(\left[\begin{array}{l}\frac{y}{3}-5=0\\ \frac{y}{3}-5=\pm1\end{array}\right.\)
\(\left[\begin{array}{l}y=5\times3\\ y=\left(1+5\right)\times3\\ y=\left(-1+5\right)\times3\end{array}\right.\)
\(\left[\begin{array}{l}y=15\\ y=18\\ y=12\end{array}\right.\)
Vậy y ∈ {12; 15; 18}