Thuyết minh đoạn trích trao duyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Do tan(\(\pi\)/4) = 1
Suy rời khỏi \(\pi\)/4 là số vô tỷ và bởi vậy \(\pi\) là số vô tỷ
Vì sao \(\tan\dfrac{\pi}{4}=1\) lại suy ra được \(\dfrac{\pi}{4}\) vô tỉ thế bạn?

Đặt \(f\left(x\right)=x^3+x+1\) thì \(f\left(x\right)\) liên tục trên \(ℝ\)
Ta có \(f\left(-1\right)=\left(-1\right)^3-1+1=-1< 0\)
\(f\left(0\right)=1>0\)
\(\Rightarrow f\left(-1\right).f\left(0\right)< 0\)
Do đó tồn tại ít nhất 1 số \(c\in\left(-1;0\right)\) sao cho \(f\left(c\right)=0\). Điều này tương đương với pt \(x^3+x+1=0\) có ít nhất 1 nghiệm âm lớn hơn \(-1\).

#include <bits/stdc++.h>
using namespace std;
int main(){
int n,k;
cin >> n >> k;
int a[n];
for (int i=0;i<n;i++)
cin>> a[i];
for (int i=0;i<n;i++)
if (a[i]%k==0) cout << a[i] <<" ";
return 0;
}