cho dãy số: \(\frac{1}{8}\)\(\frac{1}{16}\)\(\frac{1}{32}\)\(\frac{1}{64}\)........ Tìm số hạng thứ 45 của dãy (Kết quả là số thập phân viết dưới dạng a/b)
nhớ giải bài đầy đủ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy phân số sau bằng 0,25 ( hay 1/4 ) phân số trước .
Phân số tiếp theo :
1/256 x 1/4 = 1/1024
Bạn thi violympic à ?
S = 1\(\dfrac{1}{3}\).1\(\dfrac{1}{8}\).1\(\dfrac{1}{15}\).1\(\dfrac{1}{24}\).1\(\dfrac{1}{35}\)....
S = \(\dfrac{4}{3}\).\(\dfrac{9}{8}\).\(\dfrac{16}{15}\).\(\dfrac{25}{24}\).\(\dfrac{36}{35}\)....
S = \(\dfrac{2^2}{1.3}\).\(\dfrac{3^2}{2.4}\).\(\dfrac{4^2}{3.5}\).\(\dfrac{5^2}{4.6}\).\(\dfrac{6^2}{5.7}\)...
Phân số thứ 100 của dãy số trên là: \(\dfrac{101^2}{100.102}\)
Tích của 100 số đầu tiên của dãy trên là:
S = \(\dfrac{2^2}{1.3}\).\(\dfrac{3^2}{2.4}\).\(\dfrac{4^2}{3.5}\).\(\dfrac{5^2}{4.6}\).\(\dfrac{6^2}{5.7}\)....\(\dfrac{101^2}{100.102}\)
S = \(\dfrac{\left(1.2.3...100.101\right)\times\left(2.3.4.5...101\right)}{\left(1.2.3.4...100\right)\times\left(3.4.5....101.102\right)}\)
S = \(\dfrac{101.2}{1.102}\)
S = \(\dfrac{101}{51}\)
51xS = \(\dfrac{101}{51}\) x 51 = 101
S = 1\(\dfrac{1}{3}\).1\(\dfrac{1}{8}\).1\(\dfrac{1}{15}\).1\(\dfrac{1}{24}\).1\(\dfrac{1}{35}\)....
S = \(\dfrac{4}{3}\).\(\dfrac{9}{8}\).\(\dfrac{16}{15}\).\(\dfrac{25}{24}\).\(\dfrac{36}{35}\)....
S = \(\dfrac{2^2}{1.3}\).\(\dfrac{3^2}{2.4}\).\(\dfrac{4^2}{3.5}\).\(\dfrac{5^2}{4.6}\).\(\dfrac{6^2}{5.7}\)...
Phân số thứ 100 của dãy số trên là: \(\dfrac{101^2}{100.102}\)
Tích của 100 số đầu tiên của dãy trên là:
S = \(\dfrac{2^2}{1.3}\).\(\dfrac{3^2}{2.4}\).\(\dfrac{4^2}{3.5}\).\(\dfrac{5^2}{4.6}\).\(\dfrac{6^2}{5.7}\)....\(\dfrac{101^2}{100.102}\)
S = \(\dfrac{\left(1.2.3...100.101\right)\times\left(2.3.4.5...101\right)}{\left(1.2.3.4...100\right)\times\left(3.4.5....101.102\right)}\)
S = \(\dfrac{101.2}{1.102}\)
S = \(\dfrac{101}{51}\)
51xS = \(\dfrac{101}{51}\) x 51 = 101
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{18}+\frac{1}{20}\)
\(A=1,46\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Gọi an là số hạng thứ n của dãy.
Có: \(a_1=\frac{1}{8}=\frac{1}{2^3}=\frac{1}{2^{1+2}}\)
\(a_2=\frac{1}{16}=\frac{1}{2^4}=\frac{1}{2^{2+2}}\)
\(a_3=\frac{1}{32}=\frac{1}{2^5}=\frac{1}{2^{3+2}}\)
\(\Rightarrow a_n=\frac{1}{2^{n+2}}\)
\(\Rightarrow a_{45}=\frac{1}{2^{45+2}}=\frac{1}{2^{51}}\)