cho P = 1+1/2+1/3+.......+1/2100-1
CMR P > 50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=1+1/2+1/3+1/4+...+1/2^100-1
suy ra P=1+1/2+1/3+1/2^2+...+1/2^100+1/2^100-1+1/2^100-1/2^100
suy ra P=1+1/2+(1/3+1/2^2)+(1/5+1/2^3)+...+(1/2^99+1+...+1/2^100)-1/2^100
suy ra P>1+1/2+1/2^2.2+1/2^3.3^2+...+1/2^100.2^99-1/2^100
suy ra P>1+1/2.100-1/2^100
suy ra P>51-1/2^100>51-1
suy ra P>50(đpcm)
A = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
A = \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
A = \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
A = B - 2C ( ĐPCM )
Vậy A = B - 2C
a) Để chứng minh rằng A < 100, ta chia A thành 100 nhóm :
A = \(1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+...+\frac{1}{7}\right)+\left(\frac{1}{2^3}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}}-1\right)\)
Thay các phân số trong mỗi dấu ngoặc bằng phân số lớn nhất trong dấu ngoặc đó, ta được :
A < \(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+...+\frac{1}{2^{99}}.2^{99}=100\)
b) Để chứng minh rằng A > 50, ta thêm và bớt \(\frac{1}{2^{100}}\)rồi viết A dưới dạng sau :
A = \(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+...+\frac{1}{2^3}\right)+\left(\frac{1}{9}+...+\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{99}+1}+...+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)
Thay các phân số trong mỗi dấu ngoặc bằng phân số nhỏ nhất trong dấu ngoặc đó, ta được :
A > \(1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100}}.2^{99}-\frac{1}{2^{100}}=1+\frac{1}{2}.100-\frac{1}{2^{100}}>50\)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(\Rightarrow\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
\(\Rightarrow\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(\Rightarrowđpcm\)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\\ =\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)\\ =\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)+\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\\ =\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+....+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\left(\text{đ}pcm\right)\)
Chúc bạn học tốt !!!
Lời giải:
$A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}$
$< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}$
$=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}$
=2-\frac{1}{50}< 2$
(đpcm)
ta có :
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\) (1)
Gọi T là tích tất cả các số lẻ nhỏ hơn 50 :
\(T=1.3.5....49\)
Nhân 2 vế của (1) với \(2^4T\) ta được :
\(A.2^4T=\frac{2^4T}{2}+\frac{2^4T}{3}+\frac{2^4T}{4}+...+\frac{2^4T}{49}+\frac{2^4T}{50}\) (2)
Dễ thấy tất cả các số hạng ở vế phải của (2) trừ số hạng \(\frac{2^4T}{2^5}\) đều là số tự nhiên
\(\Rightarrow\) Vế phải có tổng không phải là số tự nhiên
Do đó , A không phải là số tự nhiên
con ko bit CM