K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

*Hình,lời giải thì bạn tự làm , có thể sẽ có 1 bạn vẽ hình cho bạn :)

a)

\(AM=\frac{1}{2}AB\Rightarrow S_{AMC}=\frac{1}{2}S_{ABC}\)

\(\Delta AMC.\Delta AMD\Rightarrow S_{AMC}=S_{AMB}\)

Có \(d\left(D;AM\right)=d\left(C;AM\right)\)

b)

\(S_{EMC}=\frac{1}{2}S_{MBC}=\frac{1}{2}.15=7,5\left(cm^2\right)\)

c)

Bạn check lại đề phần c) nhé

3 tháng 6 2021

c) Mình làm theo đề bạn sử nhé 

Gọi O là giao điểm MN và AC

Ta có : AMND là hình bình hành

AE là trọng tâm \(\Rightarrow\)\(\Delta AMN\Rightarrow AE=\frac{2}{3}AO\)

Mà \(AO=\frac{1}{2}AC\Rightarrow AE=\frac{1}{3}AC\)

Chứng minh tương tự ta có :

 \(GC=\frac{1}{3}AC\)

\(\Rightarrow EG=\frac{1}{3}AC\)

\(\Rightarrow EG=GC=AE\)

Giải thích các bước giải:

a) Xét tam giác ABC và AMC có chung chiều cao hạ từ đỉnh C mà M là trung điểm AB nên AB = 2 x AM => S_ABC = 2 x S_AMC

Xét tam giác AMC với AMD có chung đáy AM, chiều cao hạ từ đỉnh D đáy AM = chiều cao từ đỉnh C đáy AM => S_AMC = S_AMD.

b) Nối AN và EN 

Xét các tam giác AMC và ANC đều = 1/4 diện tích hình bình hành = 15 cm2. Mặt khác 2 tam giác này có chung đáy AC => chiều cao hạ từ đỉnh M xuống đáy AC = chiều cao từ đỉnh N đáy AC.

Xét tam giác ENC và EMC chung đáy EC, chiều cao bằng nhau => S_ENC = S_EMC. (1)

Xét tam giác EDN và ENC chung đỉnh E, đáy DN = NC => S_EDN = S_ENC (2)

Xét S tam giác AMD = S_AMC (phần a đã chứng minh) có chung AME => S_AED = S_EMC (3)

Từ (1) ; (2) và (3) => S_EMC = S_ENC = S_EDN = S_AED.

Ta có S_MBC = 15 cm2 => S_ACD = 15 x 2 = 3 (cm2)

Mà S_ACD = S_ENC + S_EDN + S_AED và 3 tam giác này bằng nhau nên :

S_ENC = 30 : 3 = 10 (cm2) mà S_ENC = S_MEC.

Vậy diện tích MEC = 10 cm2.

c) Từ S_MEC = 10 cm2 => S_MEA = 15 - 10 = 5 (cm2)

Xét có chung chiều cao đỉnh M mà S_MEA/S_MCA = 5/15 = 1/3 =>đáy AE = 1/3 AC

(với cách chứng minh tương tự ta có S_NGC = 5 cm2 và GC = 1/3 AC)

Vậy EG = AC - 1/3 AC - 1/3 AC = 1/3AC

Vậy AE = EG = GC

18 tháng 3 2023

bạn ơi mình chưa hiểu câu c bạn giải chi tiết được ko

27 tháng 6 2019

mik cũng thăk măk

27 tháng 6 2019

bài này khó thật 

Giải thích các bước giải:

a) Xét tam giác ABC và AMC có chung chiều cao hạ từ đỉnh C mà M là trung điểm AB nên AB = 2 x AM => S_ABC = 2 x S_AMC

Xét tam giác AMC với AMD có chung đáy AM, chiều cao hạ từ đỉnh D đáy AM = chiều cao từ đỉnh C đáy AM => S_AMC = S_AMD.

b) Nối AN và EN 

Xét các tam giác AMC và ANC đều = 1/4 diện tích hình bình hành = 15 cm2. Mặt khác 2 tam giác này có chung đáy AC => chiều cao hạ từ đỉnh M xuống đáy AC = chiều cao từ đỉnh N đáy AC.

Xét tam giác ENC và EMC chung đáy EC, chiều cao bằng nhau => S_ENC = S_EMC. (1)

Xét tam giác EDN và ENC chung đỉnh E, đáy DN = NC => S_EDN = S_ENC (2)

Xét S tam giác AMD = S_AMC (phần a đã chứng minh) có chung AME => S_AED = S_EMC (3)

Từ (1) ; (2) và (3) => S_EMC = S_ENC = S_EDN = S_AED.

Ta có S_MBC = 15 cm2 => S_ACD = 15 x 2 = 3 (cm2)

Mà S_ACD = S_ENC + S_EDN + S_AED và 3 tam giác này bằng nhau nên :

S_ENC = 30 : 3 = 10 (cm2) mà S_ENC = S_MEC.

Vậy diện tích MEC = 10 cm2.

c) Từ S_MEC = 10 cm2 => S_MEA = 15 - 10 = 5 (cm2)

Xét có chung chiều cao đỉnh M mà S_MEA/S_MCA = 5/15 = 1/3 =>đáy AE = 1/3 AC

(với cách chứng minh tương tự ta có S_NGC = 5 cm2 và GC = 1/3 AC)

Vậy EG = AC - 1/3 AC - 1/3 AC = 1/3AC

Vậy AE = EG = GC

14 tháng 6 2021
AN và ở đâu
11 tháng 6 2021

Nối AN và EN

Xét các tam giác AMC và ANC đều = \(\frac{1}{4}\) diện tích hình bình hành = 15 cm2. Mặt khác 2 tam giác này có chung đáy AC \(\Rightarrow\)chiều cao hạ từ đỉnh M xuống đáy AC = chiều cao từ đỉnh N đáy AC.

Xét tam giác ENC và EMC chung đáy EC, chiều cao bằng nhau \(\Rightarrow\)\(S_{ENC}=S_{EMC}\left(1\right)\)

Xét tam giác EDN và ENC chung đỉnh E, đáy DN = NC \(\Rightarrow\)\(S_{EDN}=S_{ENC}\left(2\right)\)

Xét \(S_{AMD}\)\(S_{AMC}\)  có chung AME \(\Rightarrow\)\(S_{AED}=S_{EMC}\left(3\right)\)

Từ (1) ; (2) và (3) \(\Rightarrow\) \(S_{EMC}=S_{ENC}=S_{EDN}=S_{AED}\)

Ta có \(S_{MBC}=\) 15 cm2 \(\Rightarrow\) \(S_{ACD}\)= 15 x 2 = 30 (cm2)

\(S_{ACD}\) \(=S_{ENC}+S_{EDN}+S_{AED}\) và 3 tam giác này bằng nhau nên :

\(S_{ENC}\) = 30 : 3 = 10 (cm2) mà \(S_{ENC}\)\(S_{MEC}\)

Vậy diện tích MEC = 10 cm2.

11 tháng 6 2021

\(S_{AMD}=\frac{1}{2}S_{MDC}\)vì đáy \(AM=\frac{1}{2}DC\)và chiều cao kẻ từ  \(D\)đến \(AM\)bằng chiều cao kẻ từ \(M\)đến \(DC\)vì cả hai chiều cao đều là chiều cao của hình thang

\(S_{AMD}=\frac{1}{2}S_{MDC}\)mà chung đáy \(MD\)nên chiều cao \(AH=\frac{1}{2}\)chiều cao \(CK\)

Ta có: Chiều cao \(AH\)cũng chính là chiều cao \(\Delta AME\)và chiều cao \(CK\)cũng chính là chiều cao của \(\Delta MEC\)

\(S_{AME}=\frac{1}{2}S_{MEC}\)vì chung đáy \(ME\)và chiều cao \(AH=\frac{1}{2}CK\)

\(\Rightarrow\)Coi \(S_{AME}\)là một phần, \(S_{MEC}\)là hai phần, \(S_{MAC}\)là 3 phần

Ta có: \(S_{MAC}=S_{MBC}\)vì đáy \(MA=MB\)và chung chiều cao kẻ từ \(C\)đến \(AB\)

\(S_{MEC}=15:\left(1+2\right).2=10\left(cm^2\right)\)

Vậy \(S_{MEC}=10cm^2\)

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.1) C/m : tứ giác AMND là hình bình hành.2) C/m: tứ giác AMCN là hình bình hành.B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.1) C/m: O là trung điểm của EF.2) C/m: tứ  giác AECF là hình bình hành3) C/m: tứ giác BDEF là hình bình hành.B3: cho hình bình...
Đọc tiếp

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.

1) C/m : tứ giác AMND là hình bình hành.

2) C/m: tứ giác AMCN là hình bình hành.

B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.

1) C/m: O là trung điểm của EF.

2) C/m: tứ  giác AECF là hình bình hành

3) C/m: tứ giác BDEF là hình bình hành.

B3: cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD.

1) C/m: tứ giác AECF là hình bình hành.

2) C/m: O là trung điểm của EF.

B4: Cho hình bình hành ABCD có hai đường chéo AB và CD cắt nhau tại O. Gọi M,N,P,Q lần lượt là tủng điểm của các đoạn OA, OB, OC, OD.

1)C/m : tứ giác MNPQ là hình bình hành.

2) C/m: các tứ giác ANCQ , BPDM là các hình bình hành.

Giúp mik với nha, thanks !!!!

3
20 tháng 8 2017

đã hỏi thì hỏi ít thôi. hỏi lắm thế

20 tháng 8 2017

hỏi 1 lần luôn cho lẹ, k cần mn giải hết đâu, biết bài nào thì giải giúp th

DD
9 tháng 6 2021

1) \(S_{AMC}=\frac{1}{3}\times S_{ABC}\)(chung đường cao hạ từ \(C\)\(AM=\frac{1}{3}\times AB\))

 \(S_{AMN}=\frac{1}{3}\times S_{AMC}\)(chung đường cao hạ từ \(M\)\(AN=\frac{1}{3}\times AC\))

\(S_{AMN}=\frac{1}{3}\times S_{AMC}=\frac{1}{3}\times\frac{1}{3}\times S_{ABC}=\frac{1}{9}\times S_{ABC}\)

2)  \(S_{AKN}=\frac{1}{3}\times S_{AKC}\)(chung đường cao hạ từ \(K\)\(AN=\frac{1}{3}\times AC\))

 \(S_{AKM}=\frac{1}{3}\times S_{AKB}\)(chung đường cao hạ từ \(K\)\(AM=\frac{1}{3}\times AB\))

Cộng lại vế với vế ta được: 

\(S_{AKN}+S_{AKM}=\frac{1}{3}\times\left(S_{AKC}+S_{AKB}\right)\)

\(\Leftrightarrow S_{AMKN}=\frac{1}{3}\times S_{ABC}\)

Dễ thấy \(H\)nằm trên đoạn \(AK\)nên \(AH< AK\).