tìm 3 số hữu tỉ x,y,z biết xy=\(\frac{1}{3}\), yz=\(\frac{-2}{5}\)và zx=\(\frac{-3}{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, ta có: \(\left(xyz\right)^2=\frac{1}{3}\cdot\left(-\frac{2}{5}\right)\cdot\left(-\frac{3}{10}\right)=\frac{1}{25}\)
\(\rightarrow xyz=\sqrt{\frac{1}{25}}=+_-\frac{1}{5}\)
Th1: xyz = 1/5
=> z= xyz : xy = 1/5 : 1/3 = 3/5
=> x= xyz : yz = 1/5 : (-2/5) = -1/2
=> y = xyz : xz = 1/5 : (-3/10) = -2/3
Th2: xyz = -1/5
=> z= xyz : xy = -1/5 : 1/3 = -3/5
=> x= xyz : yz = -1/5 : (-2/5) = 1/2
=> y = xyz : xz = -1/5 : (-3/10) = 2/3
Vậy....
\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\frac{xy}{\left(x+z\right)\left(y+z\right)}}\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{y+z}\right)\)
Tương tự: \(\sqrt{\frac{yz}{yz+x}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{x+z}\right)\) ; \(\sqrt{\frac{zx}{zx+y}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{z}{y+z}\right)\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{xy+1}{9}=\frac{xy+1+yz+2+xz+3}{9+15+27}=\frac{\left(xy+yz+xz\right)+6}{51}=\frac{11+6}{51}=\frac{1}{3}\)
\(\Leftrightarrow\frac{xy+1}{9}=\frac{1}{3}\Leftrightarrow3xy+3=9\Leftrightarrow xy=2\left(1\right)\)
\(\Leftrightarrow\frac{yz+2}{15}=\frac{1}{3}\Leftrightarrow3yz+6=15\Leftrightarrow yz=3\left(2\right)\)
\(\Leftrightarrow\frac{xz+3}{27}=\frac{1}{3}\Leftrightarrow3xz+9=27\Leftrightarrow xz=6\left(3\right)\)
Kết hợp (1);(2);(3) ta có \(y=\frac{2}{x}\Rightarrow\frac{2}{x}.z=3\Rightarrow2z=3x\Rightarrow x.\frac{3x}{2}=6\Leftrightarrow3x^2=12\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Với \(x=2\Rightarrow y=1;z=3\)
Với \(x=-2\Rightarrow y=-1;z=-3\)
Vậy ....
b. Ta có : xy.yz.zx=3/5.4/5.3/4
=) x^2.y^2.z^2=9/25
(=) (x.y.z)^2 =9/25
mà (x.y.z)^2 =(3/5)^2
(=) x.y.z =3/5
*Ta có xy=3/5
=) xyz =3/5
=)3/5.z =3/5
=) z =3/5:3/5
(=) z =1
*Ta có: yz=4/5
=) xyz =3/5
=) x.4/5=3/5
=) x =3/5:4/5
=) x = 3/4
*Ta có: zx=3/4
=) xyz =3/5
(=) xzy =3/5
=)3/4.y=3/5
=) y =3/5:3/4
=) y =4/5
Vậy x=3/4, y=4/5, z=1
Áp dụng bđt AM-GM ta có
\(P\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2.\left(yz+1\right)^2.\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=A\)
Ta có \(A=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Áp dụng bđt AM-GM ta có
\(A\ge3\sqrt[3]{8\sqrt{\frac{xyz}{xyz}}}=3.2=6\)
\(\Rightarrow P\ge6\)
Dấu "=" xảy ra khi x=y=z=\(\frac{1}{2}\)
Làm tiếp bài ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ chớ hình như bị ngược dấu ó.Do mình gà nên chỉ biết cô si mù mịt thôi ạ
\(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
\(=3\sqrt[3]{\left(y+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}\right)\left(z+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}\right)\left(x+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}\right)}\)
\(\ge3\sqrt[3]{5\sqrt[5]{\frac{y}{256x^4}}\cdot5\sqrt[5]{\frac{z}{256y^4}}\cdot5\sqrt[5]{\frac{x}{256z^4}}}\)
\(=3\sqrt[3]{125\sqrt[5]{\frac{xyz}{256^3\left(xyz\right)^4}}}\)
\(=15\sqrt[3]{\sqrt[5]{\frac{1}{256^3\left(xyz\right)^3}}}\)
\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\left(\frac{x+y+z}{3}\right)^9}}\)
\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\frac{1}{2^9}}}=\frac{15}{2}\)
Dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)
Ta có: xy.yz.zx = \(\frac{1}{3}\times\frac{-2}{5}\times\frac{-3}{10}=\frac{1}{25}\)=> \(\left(xyz\right)^2=\frac{1}{25}\)
Mà \(\frac{1}{25}=\left(\frac{1}{5}\right)^2=\left(-\frac{1}{5}\right)^2\)
Nếu \(\left(xyz\right)^2=\left(\frac{1}{5}\right)^2\Rightarrow xyz=\frac{1}{5}\)
=> \(x=\frac{1}{5}:yz=\frac{1}{5}:\left(-\frac{2}{5}\right)=-\frac{1}{2}\)
=> \(y=\frac{1}{5}:xz=\frac{1}{5}:\left(-\frac{3}{10}\right)=-\frac{2}{3}\)
=> \(z=\frac{1}{5}:xy=\frac{1}{5}:\frac{1}{3}=\frac{3}{5}\)
Nếu \(\left(xyz\right)^2=\left(-\frac{1}{5}\right)^2\Rightarrow xyz=-\frac{1}{5}\)
(Tương tự trên nha ^^ )
=>\(xy.yz.zx=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{6}{150}=\frac{1}{25}\)
=>\(x^2.y^2.z^2=\frac{1^2}{5^2}\)
=>\(\left(x.y.z\right)^2=\left(\frac{1}{5}\right)^2\)
=>\(x.y.z=\frac{1}{5}\)
=>\(x=\frac{1}{5}:\frac{-2}{5}=\frac{-1}{2}\)
=>\(y=\frac{1}{5}:\frac{-3}{10}=\frac{-2}{3}\)
=>\(z=\frac{1}{5}:\frac{1}{3}=\frac{3}{5}\)