Giải các phương trình :
a, 3x3 + 2x2 + 2x + 3 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left(-x+3\right)\left(x+6\right)=18\)
\(\Leftrightarrow-x^2-6x+3x+18-18=0\)
\(\Leftrightarrow-x\left(x+3\right)=0\)
=>x=0 hoặc x=-3
b: \(\Leftrightarrow x\left(3x^2+6x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2x-\dfrac{4}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2=\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow x\in\left\{0;\dfrac{\sqrt{21}}{3}-1;\dfrac{-\sqrt{21}}{3}-1\right\}\)
c: =>x(3x-5)=0
=>x=0 hoặc x=5/3
d: =>(x-2)(x+2)=0
=>x=2 hoặc x=-2
Ta có:
⇔ 20x – 80 – 12 x 2 – 6x > 4x – 12 x 2 – 15x
⇔ 20x – 12 x 2 – 6x – 4x + 12x2 + 15x > 80
⇔ 25x > 80
⇔ x > 3,2
Vậy tập nghiệm của bất phương trình là {x|x > 3,2}
a)
3 x 2 − 5 x + 1 x 2 − 4 = 0 ⇔ 3 x 2 − 5 x + 1 = 0
hoặc x 2 – 4 = 0 ( 2 )
+ Giải (1): 3 x 2 – 5 x + 1 = 0
Có a = 3; b = -5; c = 1 ⇒ Δ = ( - 5 ) 2 – 4 . 3 = 13 > 0
Phương trình có hai nghiệm:
+ Giải (2): x 2 – 4 = 0 ⇔ x 2 = 4 ⇔ x = 2 hoặc x = -2.
Vậy phương trình có tập nghiệm
b)
2 x 2 + x − 4 2 − ( 2 x − 1 ) 2 = 0 ⇔ 2 x 2 + x − 4 − 2 x + 1 2 x 2 + x − 4 + 2 x − 1 = 0 ⇔ 2 x 2 − x − 3 2 x 2 + 3 x − 5 = 0 ⇔ 2 x 2 − x − 3 = 0 ( 1 )
hoặc 2 x 2 + 3 x – 5 = 0 ( 2 )
+ Giải (1): 2 x 2 – x – 3 = 0
Có a = 2; b = -1; c = -3 ⇒ a – b + c = 0
⇒ Phương trình có hai nghiệm x = -1 và x = -c/a = 3/2.
+ Giải (2): 2 x 2 + 3 x – 5 = 0
Có a = 2; b = 3; c = -5 ⇒ a + b + c = 0
⇒ Phương trình có hai nghiệm x = 1 và x = c/a = -5/2.
Vậy phương trình có tập nghiệm
(2x2 + x – 4)2 – (2x – 1)2 = 0
⇔ (2x2 + x – 4 – 2x + 1)(2x2 + x – 4 + 2x – 1) = 0
⇔ (2x2 – x – 3)(2x2 + 3x – 5) = 0
⇔ 2x2 – x – 3 = 0 (1)
hoặc 2x2 + 3x – 5 = 0 (2)
+ Giải (1): 2x2 – x – 3 = 0
Có a = 2; b = -1; c = -3 ⇒ a – b + c = 0
⇒ Phương trình có hai nghiệm x = -1 và x = -c/a = 3/2.
+ Giải (2): 2x2 + 3x – 5 = 0
Có a = 2; b = 3; c = -5 ⇒ a + b + c = 0
⇒ Phương trình có hai nghiệm x = 1 và x = c/a = -5/2.
Vậy phương trình có tập nghiệm
a) 2 x 2 − 2 x 2 + 3 x 2 − 2 x + 1 = 0 ( 1 )
Đặt x 2 – 2 x = t ,
(1) trở thành : 2 t 2 + 3 t + 1 = 0 ( 2 ) .
Giải (2) :
Có a = 2 ; b = 3 ; c = 1
⇒ a – b + c = 0
⇒ (2) có nghiệm t 1 = - 1 ; t 2 = - c / a = - 1 / 2 .
+ Với t = -1 ⇒ x 2 − 2 x = − 1 ⇔ x 2 − 2 x + 1 = 0 ⇔ ( x − 1 ) 2 = 0 ⇔ x = 1
(1) trở thành: t 2 – 4 t + 3 = 0 ( 2 )
Giải (2):
Có a = 1; b = -4; c = 3
⇒ a + b + c = 0
⇒ (2) có nghiệm t 1 = 1 ; t 2 = c / a = 3 .
+ t = 1 ⇒ x + 1/x = 1 ⇔ x 2 + 1 = x ⇔ x 2 – x + 1 = 0
Có a = 1; b = -1; c = 1 ⇒ Δ = ( - 1 ) 2 – 4 . 1 . 1 = - 3 < 0
Phương trình vô nghiệm.
\(2x^2-6x-3=0\)
\(\Delta'=3^2+3.2=15>0\)
⇒ Phương trình có hai nghiệm phân biệt.
Theo hệ thức viét có : \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\)
Ta có : \(A=x_1^2x_2^2-2x_1-2x_2=\left(x_1x_2\right)^2-2\left(x_1+x_2\right)=\left(-\dfrac{3}{2}\right)^2-2.3=-\dfrac{15}{4}\)
Vậy \(A=-\dfrac{15}{4}\) thì thỏa mãn điều kiện bài ra.
a, 3x3 + 2x2 + 2x + 3 = 0
<=>3x3+3+2x2+2x=0
<=>3(x3+1)+2x.(x+1)=0
<=>3.(x+1)(x2-x+1)+2x.(x+1)=0
<=>(x+1)[3.(x2-x+1)+2x]=0
<=>(x+1)(3x2-3x+3+2x)=0
<=>(x+1)(3x2-x+3)=0
mà 3x2-x+3=3.(x2-\(\frac{1}{3}\)x+1)
=3.(x2-2.x.\(\frac{1}{6}\)+\(\frac{1}{36}+\frac{35}{36}\))
=3.(x2-2.x.\(\frac{1}{6}+\frac{1}{36}\))\(+\frac{35}{12}\)
=3.(x-\(\frac{1}{6}\))2+\(\frac{35}{12}\ge0\left(\text{vì (x-}\frac{1}{6}\text{)}\ge0\right)\)
nên x+1=0
<=>x=-1