1/6 + 2/15 + 3/40 + 4/96 + 5/204 + 6/391 + 7/690
Gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3-2}{2\times3}+\frac{5-3}{3\times5}+\frac{8-5}{5\times8}+...\frac{38-30}{30\times38}+\frac{47-38}{38\times47}\)
\(A=\frac{3}{2\times3}-\frac{2}{2\times3}+\frac{5}{3\times5}-\frac{3}{3\times5}+...\frac{38}{30\times38}-\frac{30}{30\times38}+\frac{47}{38\times47}-\frac{38}{38\times47}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}+...+\frac{1}{30}-\frac{1}{38}+\frac{1}{38}-\frac{1}{47}\)
\(A=\frac{1}{2}-\frac{1}{47}=\frac{47}{94}-\frac{2}{94}=\frac{45}{94}\)
Ad ĐỪNG XÓA
Học tiếng anh free vừa học vừa chơi đây
các bạn vào đây đăng kí nhá : https://iostudy.net/ref/165698
a) Ta có B = \(\left(\frac{2}{15}+\frac{3}{40}+\frac{4}{96}+\frac{5}{204}+\frac{6}{391}\right).x.\left(x-1\right)=\frac{20}{69}\)
=> \(\left(\frac{2}{3.5}+\frac{3}{5.8}+\frac{4}{8.12}+\frac{5}{12.17}+\frac{6}{17.23}\right).x.\left(x-1\right)=\frac{20}{69}\)
=> \(\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+\frac{1}{17}-\frac{1}{23}\right).x.\left(x-1\right)=\frac{20}{69}\)
=> \(\left(\frac{1}{3}-\frac{1}{23}\right).x.\left(x-1\right)=\frac{20}{69}\)
=> \(\frac{20}{69}.x.\left(x-1\right)=\frac{20}{69}\)
=> \(x.\left(x-1\right)=\frac{20}{69}:\frac{20}{69}\)
=> \(x.\left(x-1\right)=1\)
=> \(x\in\varnothing\)
a) \(\left(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+....+\frac{1}{8554}\right).x=\frac{31}{94}\)
=> \(\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{91.94}\right).x=\frac{31}{94}\)
=> \(\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{91.94}\right)=\frac{31}{94}\)
=> \(\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{91}-\frac{1}{94}\right).x=\frac{31}{94}\)
=> \(\frac{1}{3}.\left(1-\frac{1}{94}\right).x=\frac{31}{94}\)
=> \(\frac{1}{3}.\frac{93}{94}.x=\frac{31}{94}\)
=> \(\frac{31}{94}.x=\frac{31}{94}\)
=> \(x=\frac{31}{94}:\frac{31}{94}\)
=> \(x=1\)
\(\frac{1}{6}\) + \(\frac{2}{15}\) + \(\frac{3}{40}\) + \(\frac{4}{96}\) + \(\frac{5}{204}\)
= \(\frac{3}{10}\)+\(\frac{3}{40}\)+ \(\frac{4}{96}\) + \(\frac{5}{204}\)
=\(\frac{3}{8}\)+\(\frac{4}{96}\)+ \(\frac{5}{204}\)
= \(\frac{5}{12}\)+ \(\frac{5}{204}\)
Hok tốt !
k nha <3
= \(\frac{15}{34}\)
Lời giải:
Tổng 10 phân số đầu tiên là:
$\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}+\frac{5}{204}+.....+\frac{10}{2679}$
$=\frac{1}{2.3}+\frac{2}{3.5}+\frac{3}{5.8}+\frac{5}{8.12}+\frac{5}{12.17}+\frac{6}{17.23}+\frac{7}{23.30}+\frac{8}{30.38}+\frac{9}{38.47}+\frac{10}{47.57}$
$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{47}-\frac{1}{57}$
$=\frac{1}{2}-\frac{1}{57}=\frac{55}{114}$
1.3.77−1+3.7.99−3+7.9.1313−7+9.13.1515−9+\frac{19-13}{13.15.19}+13.15.1919−13
=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}=1.31−3.71+3.71−7.91+7.91−9.131+9.131−13.151+13.151−15.191
=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}=1.31−15.191=28595−2851=28594
b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)b,=61.(1.3.76+3.7.96+7.9.136+9.13.156+13.15.196)
làm giống như trên
c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)c,=81.(1.2.31+2.3.41+3.4.51+...+48.49.501)
=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)=161.(1.2.32+2.3.42+3.4.52+...+48.49.502)
=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)=161.(1.2.33−1+2.3.44−2+3.4.55−3+...+48.49.5050−48)
=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)=161.(1.21−2.31+2.31−3.41+3.41−4.51+...+48.491−49.501)
=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}=161.(21−24501)=161.(24501225−24501)=4900153
d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)d,=75.(1.5.87+5.8.127+8.12.157+...+33.36.407)
=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)=75.(1.5.88−1+5.8.1212−5+8.12.1515−8+...+33.36.4040−33)
=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)=75.(1.51−5.81+5.81−8.121+8.121−12.151+...+33.361−36.401)
=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}=75.(51−14401)=75.(1440288−14401)=28841
P/S: . là nhân nha
\(\dfrac{3}{4}-\left[\left(-\dfrac{3}{5}\right)-\left(\dfrac{1}{12}+\dfrac{2}{4}\right)\right]\\ =\dfrac{3}{4}-\left[\left(-\dfrac{3}{5}\right)-\left(\dfrac{1}{12}+\dfrac{6}{12}\right)\right]\\ =\dfrac{3}{4}-\left[\left(-\dfrac{3}{5}\right)-\dfrac{7}{12}\right]\\ =\dfrac{3}{4}-\left[\left(-\dfrac{36}{60}\right)-\dfrac{35}{60}\right]\\ =\dfrac{3}{4}-\left(-\dfrac{71}{60}\right)\\ =\dfrac{3}{4}+\dfrac{71}{60}\\ =\dfrac{35}{60}+\dfrac{71}{60}\\ =\dfrac{106}{60}\\ =\dfrac{53}{30}\)
__
\(-\dfrac{6}{7}.\dfrac{21}{12}\\ =-\dfrac{126}{84}\\ =-\dfrac{63}{42}\\ =-\dfrac{31}{14}\)
__
\(\left(-5\right).\left(-\dfrac{6}{20}\right)\\ =\dfrac{\left(-5\right).\left(-6\right)}{20}\\ =\dfrac{30}{20}\\ =\dfrac{3}{2}\)
__________
=1/2x3+2/3x5+3/5x8+4/8x12+5/12x17+6/17x23+7/23x30
=1/2-1/3+1/3-1/5+...+1/23-1/30
=1/2-1/30
=7/15