K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: ΔABD=ΔEBD

=>BA=BE và DA=DE

Xét ΔBAE có BA=BE

nên ΔBAE cân tại B

c: Ta có: DA=DE
DE<DC(ΔDEC vuông tại E nên DC là cạnh huyền)

=>DA<DC

d: BA=BE

=>B nằm trên đường trung trực của AE(1)

DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

=>BD vuông góc với AE tại trung điểm của AE

=>BD\(\perp\)AE tại M và M là trung điểm của AE

CG=2GM nên \(GM=\dfrac{1}{2}CG\)
CG+GM=CM

=>\(\dfrac{1}{2}CG+CG=CM\)

=>\(CM=\dfrac{3}{2}CG\)

=>\(CG=\dfrac{2}{3}CM\)

 

Xét ΔEAC có

CM là đường trung tuyến

\(CG=\dfrac{2}{3}CM\)

Do đó: G là trọng tâm của ΔEAC

Xét ΔEAC có

G là trọng tâm

N là trung điểm của EC

Do đó: A,G,N thẳng hàng

12 tháng 1 2021

too easy

NM
12 tháng 1 2021

B A D C E H K

câu a ta có AB=BE, BD chung và góc ABD=BDE do BD là phân giác của ABC

do đó hai tam giác ABD và EBD bằng nhau theo trường hợp cạnh góc cạnh,

b, do từ kết quả câu a ta có DEB=DA B=90 độ do đó DE vuông với EB , mà AH vuông góc với EB nên

DE //AH.

c. ta có \(KB=KA+AB=EC+EB=BC\)

mà AB=BE và góc B chung 

do đó hai tam giác ABC và EBK bằng nhau theo trường hợp cạnh góc cạnh.

. dễ thấy AM và AB là tia phân giác của hai góc kề bù

do đó chúng vuông góc với nhau

nên tam giác DBM vuông tại D do đó \(\widehat{ABD}+\widehat{AMD}=90^0\)

14 tháng 12 2018

a, Vì BD là tia phân giác của góc B suy ra:

góc ABD=góc EBD 

Xét tam giác ABD và tam giác EBD có:

                  BA=BD(gt)

            góc ABD=góc EBD(cmt)

                  BD chung

suy ra: tam giác ABD= tam giác EBD(cgc)

                           Vậy tam giác ABD= tam giác EBD

b,Vì tam giác ABD=tam giác EBD nên

góc BAD=góc BED(2 góc tương ứng)

            mà góc BAD=90độ(tam giác ABC vuông tại A)

suy ra góc BED=90 độ

suy ra:DE vuông góc với BC

Câu c hình như đề bài sai

25 tháng 12 2023

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

b: Ta có: ΔABE=ΔADE

=>EB=ED

=>E nằm trên đường trung trực của BD(1)

Ta có: AB=AD

=>A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AE là đường trung trực của BD

=>AE\(\perp\)BD tại H và H là trung điểm của BD

c: Xét ΔEBM và ΔEDC có

EB=ED

\(\widehat{BEM}=\widehat{DEC}\)(hai góc đối đỉnh)

EM=EC

Do đó: ΔEBM=ΔEDC

=>\(\widehat{EBM}=\widehat{EDC}\) và BM=DC

Ta có: \(\widehat{EBM}=\widehat{EDC}\)

\(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

\(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)

Do đó: \(\widehat{EBM}+\widehat{EBA}=180^0\)

=>A,B,M thẳng hàng

Ta có: AB+BM=AM

AD+DC=AC

mà AB=AD và BM=DC

nên AM=AC

=>A nằm trên đường trung trực của MC(1)

Ta có: EM=EC

=>E nằm trên đường trung trực của MC(2)

Từ (1) và (2) suy ra AE là đường trung trực của MC

=>AE\(\perp\)MC

mà AE\(\perp\)BD

nên BD//MC

23 tháng 12 2023

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

b: ta có: ΔABE=ΔADE

=>EB=ED

=>E nằm trên đường trung trực của BD(1)

ta có: AB=AD

=>A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AE là đường trung trực của BD

=>AE\(\perp\)BD tại H và H là trung điểm của BD

c: Xét ΔBEM và ΔDEC có

EB=ED
\(\widehat{BEM}=\widehat{DEC}\)

EM=EC

Do đó: ΔBEM=ΔDEC

=>\(\widehat{EBM}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

và \(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)

nên \(\widehat{ABE}+\widehat{MBE}=180^0\)

=>A,B,M thẳng hàng

Ta có: ΔEBM=ΔEDC

=>BM=DC

Xét ΔAMC có \(\dfrac{AB}{BM}=\dfrac{AD}{DC}\)

nên BD//MC