\(A=1+2+2^2+2^3+.................+2^{10}\)10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt A = 1 + 2 + 22 + ... + 22008 (1)
=> 2A = 2 + 22 + 23 + ... + 22009 (2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = (2 + 22 + 23 + ... + 22009) - (1 + 2 + 22 + ... + 22008)
A = 22009 - 1
Khi đó B = \(\frac{2^{2009}-1}{1-2^{2009}}=\frac{2^{2009}-1}{-\left(2^{2009}-1\right)}=-1\)
b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}\)
=> A - 1 = \(\frac{20^{10}+1-20^{10}+1}{20^{10}}=\frac{2}{20^{10}}\)
Lại có B = \(\frac{20^{10}-1}{20^{10}-3}\)
=> B - 1 = \(\frac{20^{10}-1-20^{10}+3}{20^{10}-3}=\frac{2}{2^{10}-3}\)
Vì \(\frac{2}{2^{10}}< \frac{2}{2^{10}-3}\)
=> A - 1 < B - 1
=> A < B
a) \(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
Đặt \(Q=1+2+2^2+...+2^{2008}\)
\(2Q=2+2^2+2^3+...+2^{2009}\)
\(2Q-Q=2+2^2+2^3+...+2^{2009}-1-2-2^2-...-2^{2008}\)
\(\Rightarrow Q=2^{2009}-1\)
Ta thấy \(Q\) là số đối của \(2^{2009}-1\)
\(\Rightarrow B=-1\)
Vậy \(B=-1\).
b) Ta có: \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
Ta lại có: \(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\) nên \(1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)
\(\Rightarrow A< B\)
Vậy \(A< B\).
8:
\(A=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)
mà 20^10-1>20^10-3
nên A<B
Giải:
a) Gọi dãy đó là A, ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\)
\(2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\)
\(2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\right)\)
\(A=\dfrac{1}{2}-\dfrac{1}{2^{2014}}\)
Vì \(\dfrac{1}{2}< 1;\dfrac{1}{2^{2014}}< 1\) nên \(\dfrac{1}{2}-\dfrac{1}{2^{2014}}< 1\)
\(\Rightarrow A< 1\)
b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) và \(B=\dfrac{10^{10}+1}{10^{11}+1}\)
Ta có:
\(A=\dfrac{10^{11}-1}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-10}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-1+9}{10^{12}-1}\)
\(10A=1+\dfrac{9}{10^{12}-1}\)
Tương tự:
\(B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+10}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+1+9}{10^{11}+1}\)
\(10B=1+\dfrac{9}{10^{11}+1}\)
Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\) nên \(10A< 10B\)
\(\Rightarrow A< B\)
Xin lỗi nhé mình mới học lớp 6 ko biết hnhieeuf về bài lớp 7 lên mình chỉ làm được mỗi câu a thôi, nhớ tích cho mk nhé
a)
A= \(5^2+10^2+15^2+...+2015^2\)
\(A=\left(5.1\right)^2+\left(5.2\right)^2+\left(5.3\right)^2+...+\left(5.403\right)^2\)
\(A=5^2.1^2+5^2.2^2+5^2.3^2+...+5^2.403^2\)
\(A=5^2.\left(1^2+2^2+3^2+...+403^2\right)\)
\(A=25.\left[1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+403.\left(404-1\right)\right]\)
\(A=25.\left[\left(1.2+2.3+3.4+...+403.404\right)-\left(1+2+3+...+403\right)\right]\)
Gọi :\(B=1.2+2.3+3.4+...+403.404\)
\(3B=1.2.3+2.3.3+3.4.3+...+403.404.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+403.404.\left(405-402\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+403.404.405-402.403.404\)
\(=403.404.405\)
\(=65938860\)
Gọi \(C=1+2+3+...+403\) (403 số hạng)
\(=\frac{\left(403+1\right).403}{2}\)
\(=\frac{162812}{2}\)
\(=81406\)
Suy ra \(A=25.\left(B-C\right)\)
\(=25.\left(65938860-81406\right)\)
\(=25.65857454\)
\(=1646436350\)
Theo bài ra ta có: \(A=1+2+2^2+2^3+...+2^{10}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{11}\)
Mà \(A=1+2+2^2+2^3+...+2^{10}\)
\(\Rightarrow A=2^{11}-1\)